Suppr超能文献

活细胞细胞质中钙的无扩散率很高。

High rates of calcium-free diffusion in the cytosol of living cells.

机构信息

Laboratorio de Biología Celular de Membranas, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires (UBA), CONICET, Ciudad Auntónoma de Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, and Instituto de Física de Buenos Aires, CONICET, Ciudad Auntónoma de Buenos Aires, Argentina.

Laboratorio de Biología Celular de Membranas, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires (UBA), CONICET, Ciudad Auntónoma de Buenos Aires, Argentina.

出版信息

Biophys J. 2021 Sep 21;120(18):3960-3972. doi: 10.1016/j.bpj.2021.08.019. Epub 2021 Aug 26.

Abstract

Calcium (Ca) is a universal second messenger that participates in the regulation of innumerous physiological processes. The way in which local elevations of the cytosolic Ca concentration spread in space and time is key for the versatility of the signals. Ca diffusion in the cytosol is hindered by its interaction with proteins that act as buffers. Depending on the concentrations and the kinetics of the interactions, there is a large range of values at which Ca diffusion can proceed. Having reliable estimates of this range, particularly of its highest end, which corresponds to the ions free diffusion, is key to understand how the signals propagate. In this work, we present the first experimental results with which the Ca-free diffusion coefficient is directly quantified in the cytosol of living cells. By means of fluorescence correlation spectroscopy experiments performed in Xenopus laevis oocytes and in cells of Saccharomyces cerevisiae, we show that the ions can freely diffuse in the cytosol at a higher rate than previously thought.

摘要

钙(Ca)是一种普遍的第二信使,参与调节无数生理过程。细胞溶质 Ca 浓度的局部升高在空间和时间上的传播方式是信号多样性的关键。细胞溶质中的 Ca 扩散受到与其作为缓冲剂的蛋白质相互作用的阻碍。根据浓度和相互作用的动力学,Ca 扩散可以进行的数值范围很大。可靠地估计这个范围,特别是对应于离子自由扩散的最高范围,是理解信号如何传播的关键。在这项工作中,我们首次提供了实验结果,直接在活细胞的细胞溶质中定量了 Ca 无扩散系数。通过在非洲爪蟾卵母细胞和酿酒酵母细胞中进行荧光相关光谱实验,我们表明离子可以以比以前认为的更高的速率在细胞溶质中自由扩散。

相似文献

1
High rates of calcium-free diffusion in the cytosol of living cells.
Biophys J. 2021 Sep 21;120(18):3960-3972. doi: 10.1016/j.bpj.2021.08.019. Epub 2021 Aug 26.
2
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients.
Biophys J. 2005 Apr;88(4):2403-21. doi: 10.1529/biophysj.104.045260. Epub 2005 Jan 28.
3
Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate.
Science. 1992 Dec 11;258(5089):1812-5. doi: 10.1126/science.1465619.
4
A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte.
Biophys J. 1993 Oct;65(4):1727-39. doi: 10.1016/S0006-3495(93)81191-3.
5
A bidomain threshold model of propagating calcium waves.
J Math Biol. 2008 Apr;56(4):435-63. doi: 10.1007/s00285-007-0123-5. Epub 2007 Sep 5.
6
Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes.
J Physiol. 1995 Feb 1;482 ( Pt 3)(Pt 3):533-53. doi: 10.1113/jphysiol.1995.sp020538.
9
Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes.
Biophys J. 1992 Feb;61(2):509-17. doi: 10.1016/S0006-3495(92)81855-6.
10
From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation.
Adv Exp Med Biol. 2017;981:215-251. doi: 10.1007/978-3-319-55858-5_10.

引用本文的文献

1
Contribution of insulin‑like growth factor‑1 to tendon repair (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5636. Epub 2025 Sep 12.
2
Biological physics to uncover cell signaling.
Biophys Rev. 2025 Apr 10;17(2):271-283. doi: 10.1007/s12551-025-01308-8. eCollection 2025 Apr.
3
The photosensitive endoplasmic reticulum-chloroplast contact site.
J Microsc. 2025 Mar;297(3):333-348. doi: 10.1111/jmi.13377. Epub 2024 Dec 4.
4
In-phasic cytosolic-nuclear Ca rhythms in suprachiasmatic nucleus neurons.
Front Neurosci. 2023 Dec 20;17:1323565. doi: 10.3389/fnins.2023.1323565. eCollection 2023.
5
Unveiling the intricacies of intracellular Ca regulation in the heart.
Biophys J. 2023 Aug 8;122(15):3019-3021. doi: 10.1016/j.bpj.2023.07.005. Epub 2023 Jul 20.
6
Localisation of Intracellular Signals and Responses during Phagocytosis.
Int J Mol Sci. 2023 Feb 1;24(3):2825. doi: 10.3390/ijms24032825.
7
In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review.
Int J Mol Sci. 2023 Jan 25;24(3):2370. doi: 10.3390/ijms24032370.

本文引用的文献

2
Ca Release via IP Receptors Shapes the Cardiac Ca Transient for Hypertrophic Signaling.
Biophys J. 2020 Sep 15;119(6):1178-1192. doi: 10.1016/j.bpj.2020.08.001. Epub 2020 Aug 13.
3
Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity.
Curr Biol. 2020 Jul 20;30(14):2665-2680.e8. doi: 10.1016/j.cub.2020.04.090. Epub 2020 May 28.
5
To Hop or not to Hop: Exceptions in the FCS Diffusion Law.
Biophys J. 2020 May 19;118(10):2434-2447. doi: 10.1016/j.bpj.2020.04.004. Epub 2020 Apr 15.
6
Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance.
Front Microbiol. 2020 Jan 28;10:3100. doi: 10.3389/fmicb.2019.03100. eCollection 2019.
7
Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity.
PLoS Comput Biol. 2019 Aug 19;15(8):e1006795. doi: 10.1371/journal.pcbi.1006795. eCollection 2019 Aug.
8
Deterministic Limit of Intracellular Calcium Spikes.
Phys Rev Lett. 2019 Mar 1;122(8):088101. doi: 10.1103/PhysRevLett.122.088101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验