Grosskortenhaus Ruth, Pearson Bret J, Marusich Amanda, Doe Chris Q
Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon 1254, Eugene, Oregon 97403, USA.
Dev Cell. 2005 Feb;8(2):193-202. doi: 10.1016/j.devcel.2004.11.019.
Temporal patterning is an important aspect of embryonic development, but the underlying molecular mechanisms are not well understood. Drosophila neuroblasts are an excellent model for studying temporal identity: they sequentially express four genes (hunchback --> Kruppel --> pdm1 --> castor) whose temporal regulation is essential for generating neuronal diversity. Here we show that hunchback --> Kruppel timing is regulated transcriptionally and requires neuroblast cytokinesis, consistent with asymmetric partitioning of transcriptional regulators during neuroblast division or feedback signaling from the neuroblast progeny. Surprisingly, Kruppel --> pdm1 --> castor timing occurs normally in isolated or G(2)-arrested neuroblasts, and thus involves a neuroblast-intrinsic timer. Finally, we find that Hunchback potently regulates the neuroblast temporal identity timer: prolonged Hunchback expression keeps the neuroblast "young" for multiple divisions, and subsequent downregulation allows resumption of Kruppel --> pdm1 --> castor expression and the normal neuroblast lineage. We conclude that two distinct "timers" regulate neuroblast gene expression: a hunchback --> Kruppel timer requiring cytokinesis, and a Kruppel --> pdm1 --> castor timer which is cell cycle independent.
时间模式是胚胎发育的一个重要方面,但其潜在的分子机制尚未完全了解。果蝇神经母细胞是研究时间身份的优秀模型:它们依次表达四个基因(驼背基因→克虏伯基因→pdm1基因→蓖麻基因),其时间调控对于产生神经元多样性至关重要。我们在此表明,驼背基因→克虏伯基因的时间调控是通过转录进行的,并且需要神经母细胞胞质分裂,这与神经母细胞分裂过程中转录调节因子的不对称分配或神经母细胞后代的反馈信号一致。令人惊讶的是,克虏伯基因→pdm1基因→蓖麻基因的时间调控在分离的或G2期停滞的神经母细胞中正常发生,因此涉及一种神经母细胞内在的定时器。最后,我们发现驼背蛋白强烈调节神经母细胞的时间身份定时器:驼背蛋白的延长表达使神经母细胞在多次分裂中保持“年轻”,随后的下调允许克虏伯基因→pdm1基因→蓖麻基因的表达恢复以及正常的神经母细胞谱系。我们得出结论,两种不同的“定时器”调节神经母细胞基因表达:一种是需要胞质分裂的驼背基因→克虏伯基因定时器,另一种是与细胞周期无关的克虏伯基因→pdm1基因→蓖麻基因定时器。