基因移动元件介导细胞类型特异性的基因组组织和径向基因移动。

Gene mobility elements mediate cell type specific genome organization and radial gene movement .

作者信息

Lucas Tanguy, Wang Lin-Ing, Glass-Klaiber Juniper, Quiroz Elvis, Patra Sofiya, Molotkova Natalia, Kohwi Minoree

机构信息

Columbia University, Department of Neuroscience, Zuckerman Institute Mind Brain Behavior, New York, NY, United States.

Columbia University Physiology Department.

出版信息

bioRxiv. 2024 Dec 1:2024.11.30.626181. doi: 10.1101/2024.11.30.626181.

Abstract

Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the gene to the nuclear lamina in neuroblasts. We previously found that this event terminates competence to produce early-born neurons and is mediated by an intronic 250 base-pair element, which we term gene mobility element (GME). Here we found over 800 putative GMEs globally that are chromatin accessible and are Polycomb (PcG) target sites. GMEs appear to be distinct from PcG response elements, however, which are largely chromatin inaccessible in neuroblasts. Performing Hi-C of purified neuroblasts, we found that GMEs form megabase-scale chromatin interactions, spanning multiple topologically associated domain borders, preferentially contacting other GMEs. These interactions are cell type and stage-specific. Notably, GMEs undergo developmentally-timed mobilization to/from the neuroblast nuclear lamina, and domain swapping a GFP reporter transgene intron with a GME relocates the transgene to the nuclear lamina in embryos. We propose that GMEs constitute a genome organizational framework and mediate gene-to-lamina mobilization during progenitor competence state transitions .

摘要

尽管染色质分析技术取得了进展,但了解控制基因调控的基因组组织水平仍然是一项挑战。对异质细胞群体进行平均可能会掩盖细胞类型特异性的染色质结构。在这里,我们采用了一种简化的观点,从神经母细胞中基因向核纤层的重新定位开始。我们之前发现,这一事件终止了产生早出生神经元的能力,并且由一个内含子250碱基对元件介导,我们将其称为基因移动元件(GME)。在这里,我们在全球范围内发现了800多个推定的GME,它们可被染色质接近,并且是多梳(PcG)靶位点。然而,GME似乎与PcG反应元件不同,后者在神经母细胞中大多无法被染色质接近。对纯化的神经母细胞进行Hi-C分析,我们发现GME形成兆碱基规模的染色质相互作用,跨越多个拓扑相关结构域边界,优先与其他GME接触。这些相互作用是细胞类型和阶段特异性的。值得注意的是,GME在神经母细胞核纤层之间经历发育定时的移动,并且将一个绿色荧光蛋白报告转基因内含子与一个GME进行结构域交换会将转基因重新定位到胚胎中的核纤层。我们提出,GME构成了一个基因组组织框架,并在祖细胞能力状态转变期间介导基因向核纤层的移动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/618d/11623685/e3ad8186f8e4/nihpp-2024.11.30.626181v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索