Suppr超能文献

利用基于文献的发现来识别疾病候选基因。

Using literature-based discovery to identify disease candidate genes.

作者信息

Hristovski Dimitar, Peterlin Borut, Mitchell Joyce A, Humphrey Susanne M

机构信息

Institute of Biomedical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2/2 1104 Ljubljana, Slovenia.

出版信息

Int J Med Inform. 2005 Mar;74(2-4):289-98. doi: 10.1016/j.ijmedinf.2004.04.024.

Abstract

We present BITOLA, an interactive literature-based biomedical discovery support system. The goal of this system is to discover new, potentially meaningful relations between a given starting concept of interest and other concepts, by mining the bibliographic database MEDLINE. To make the system more suitable for disease candidate gene discovery and to decrease the number of candidate relations, we integrate background knowledge about the chromosomal location of the starting disease as well as the chromosomal location of the candidate genes from resources such as LocusLink and Human Genome Organization (HUGO). BITOLA can also be used as an alternative way of searching the MEDLINE database. The system is available at http://www.mf.uni-lj.si/bitola/.

摘要

我们展示了BITOLA,一个基于文献的交互式生物医学发现支持系统。该系统的目标是通过挖掘文献数据库MEDLINE,在给定的起始感兴趣概念与其他概念之间发现新的、可能有意义的关系。为了使系统更适合疾病候选基因发现并减少候选关系的数量,我们整合了关于起始疾病的染色体定位以及来自LocusLink和人类基因组组织(HUGO)等资源的候选基因的染色体定位等背景知识。BITOLA还可以用作搜索MEDLINE数据库的另一种方式。该系统可在http://www.mf.uni-lj.si/bitola/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验