局部学习规则:树突位置对依赖于尖峰时间的可塑性中突触修饰的预测影响。
Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity.
作者信息
Saudargiene Ausra, Porr Bernd, Wörgötter Florentin
机构信息
Department of Psychology, University of Stirling, UK.
出版信息
Biol Cybern. 2005 Feb;92(2):128-38. doi: 10.1007/s00422-004-0525-z. Epub 2005 Feb 4.
Recent indirect experimental evidence suggests that synaptic plasticity changes along the dendrites of a neuron. Here we present a synaptic plasticity rule which is controlled by the properties of the pre- and postsynaptic signals. Using recorded membrane traces of back-propagating and dendritic spikes we demonstrate that LTP and LTD will depend specifically on the shape of the postsynaptic depolarization at a given dendritic site. We find that asymmetrical spike-timing-dependent plasticity (STDP) can be replaced by temporally symmetrical plasticity within physiologically relevant time windows if the postsynaptic depolarization rises shallow. Presynaptically the rule depends on the NMDA channel characteristic, and the model predicts that an increase in Mg(2+) will attenuate the STDP curve without changing its shape. Furthermore, the model suggests that the profile of LTD should be governed by the postsynaptic signal while that of LTP mainly depends on the presynaptic signal shape.
最近的间接实验证据表明,神经元树突上的突触可塑性会发生变化。在此,我们提出一种由突触前和突触后信号特性控制的突触可塑性规则。利用记录的反向传播和树突棘突的膜电位变化,我们证明长时程增强(LTP)和长时程抑制(LTD)将具体取决于给定树突部位突触后去极化的形状。我们发现,如果突触后去极化上升缓慢,在生理相关的时间窗口内,不对称的尖峰时间依赖性可塑性(STDP)可被时间对称的可塑性所取代。在突触前,该规则取决于NMDA通道特性,并且该模型预测Mg(2+)的增加将使STDP曲线衰减而不改变其形状。此外,该模型表明,LTD的特征应由突触后信号控制,而LTP的特征主要取决于突触前信号的形状。