Suppr超能文献

皮质纹状体突触处的双向活动依赖可塑性。

Bidirectional activity-dependent plasticity at corticostriatal synapses.

作者信息

Fino Elodie, Glowinski Jacques, Venance Laurent

机构信息

Dynamique et Physiopathologie des Réseaux Neuronaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U-667, Collège de France, 75231 Paris Cedex 05, France.

出版信息

J Neurosci. 2005 Dec 7;25(49):11279-87. doi: 10.1523/JNEUROSCI.4476-05.2005.

Abstract

Corticostriatal projections originate from the entire cerebral cortex and provide the major source of glutamatergic inputs to the basal ganglia. Despite the importance of corticostriatal connections in sensorimotor learning and cognitive functions, plasticity forms at these synapses remain strongly debated. Using a corticostriatal slice preserving the connections between the somatosensory cortex and the target striatal cells, we report the induction of both non-Hebbian and Hebbian forms of long-term potentiation (LTP) and long-term depression (LTD) on striatal output neurons (SONs). LTP and LTD can be induced selectively by different stimulation patterns (high-frequency trains vs low-frequency pulses) and were evoked with similar efficiency in non-Hebbian and Hebbian modes. Combination of LTP-LTD and LTD-LTP sequences revealed that bidirectional plasticity occurs at the same SONs and provides efficient homeostatic mechanisms leading to a resetting of corticostriatal synapses avoiding synaptic saturation. The effect of temporal relationship between cortical stimulation and SON activity was assessed using spike-timing-dependent plasticity (STDP) protocols. An LTP was observed when an action potential was triggered in the striatal neuron before the cortical stimulus, and, conversely, an LTD was induced when the striatal neuron discharge was triggered after the cortical stimulation. Such STDP was reversed when compared with those described so far in other mammalian brain structures. This mechanism may be essential for the role of the striatum in learning of motor sequences in which sensory and motor events are associated in a precise time sequence.

摘要

皮质纹状体投射起源于整个大脑皮层,是基底神经节谷氨酸能输入的主要来源。尽管皮质纹状体连接在感觉运动学习和认知功能中很重要,但这些突触处的可塑性形式仍存在激烈争论。我们使用保留体感皮层与目标纹状体细胞之间连接的皮质纹状体切片,报告了在纹状体输出神经元(SONs)上诱导出非赫布型和赫布型长时程增强(LTP)及长时程抑制(LTD)。LTP和LTD可通过不同的刺激模式(高频串刺激与低频脉冲刺激)选择性诱导,且在非赫布型和赫布型模式下诱发效率相似。LTP-LTD和LTD-LTP序列的组合表明,双向可塑性发生在相同的SONs上,并提供了有效的稳态机制,导致皮质纹状体突触重置,避免突触饱和。使用依赖于尖峰时间的可塑性(STDP)方案评估了皮质刺激与SON活动之间时间关系的影响。当在皮质刺激之前在纹状体神经元中触发动作电位时观察到LTP,相反,当在皮质刺激之后触发纹状体神经元放电时诱导出LTD。与迄今为止在其他哺乳动物脑结构中描述的情况相比,这种STDP是相反的。这种机制对于纹状体在运动序列学习中的作用可能至关重要,在运动序列学习中,感觉和运动事件以精确的时间顺序相关联。

相似文献

1
Bidirectional activity-dependent plasticity at corticostriatal synapses.
J Neurosci. 2005 Dec 7;25(49):11279-87. doi: 10.1523/JNEUROSCI.4476-05.2005.
2
Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
Neuroscience. 2009 Jun 2;160(4):744-54. doi: 10.1016/j.neuroscience.2009.03.015. Epub 2009 Mar 19.
3
Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
J Physiol. 2008 Jan 1;586(1):265-82. doi: 10.1113/jphysiol.2007.144501. Epub 2007 Nov 1.
4
Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro.
Exp Brain Res. 2000 Dec;135(4):497-503. doi: 10.1007/s002210000523.
5
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
J Neurosci. 2008 Mar 5;28(10):2435-46. doi: 10.1523/JNEUROSCI.4402-07.2008.
6
Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
J Neurosci. 2003 Sep 17;23(24):8506-12. doi: 10.1523/JNEUROSCI.23-24-08506.2003.
7
Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway.
J Neurosci. 2020 Jul 22;40(30):5757-5768. doi: 10.1523/JNEUROSCI.2369-19.2020. Epub 2020 Jun 15.
8
Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum.
Neuropharmacology. 2017 Jul 15;121:261-277. doi: 10.1016/j.neuropharm.2017.04.012. Epub 2017 Apr 10.
9
State-dependent plasticity of the corticostriatal pathway.
Neuroscience. 2010 Feb 17;165(4):1013-8. doi: 10.1016/j.neuroscience.2009.11.031. Epub 2009 Nov 24.

引用本文的文献

1
Behavioral inflexibility through overtraining is mediated by reduced mGluR1/5 signaling capacity in the dorsolateral striatum.
PLoS Biol. 2025 Jul 29;23(7):e3003288. doi: 10.1371/journal.pbio.3003288. eCollection 2025 Jul.
2
Coincidence detection between apical and basal dendrites drives STDP in cerebellar Golgi cells.
Commun Biol. 2025 May 12;8(1):731. doi: 10.1038/s42003-025-08153-1.
3
Dynamics of striatal action selection and reinforcement learning.
Elife. 2025 May 8;13:RP101747. doi: 10.7554/eLife.101747.
4
Astroglial CB Reveal Sex-Specific Synaptic Effects of Amphetamine.
Glia. 2025 Aug;73(8):1673-1691. doi: 10.1002/glia.70026. Epub 2025 Apr 28.
5
Cholecystokinin Modulates Corticostriatal Transmission and Plasticity in Rodents.
eNeuro. 2025 Mar 12;12(3). doi: 10.1523/ENEURO.0251-24.2025. Print 2025 Mar.
6
Astrocytes Mediate Psychostimulant-Induced Alterations of Spike-Timing Dependent Synaptic Plasticity.
Glia. 2025 May;73(5):1051-1067. doi: 10.1002/glia.24672. Epub 2025 Jan 13.
7
Dissociable roles of central striatum and anterior lateral motor area in initiating and sustaining naturalistic behavior.
Cell Rep. 2025 Jan 28;44(1):115181. doi: 10.1016/j.celrep.2024.115181. Epub 2025 Jan 8.
9
Actomyosin-mediated inhibition of synaptic vesicle release under CBR activation.
Transl Psychiatry. 2024 Aug 21;14(1):335. doi: 10.1038/s41398-024-03017-4.
10
Genetic mechanisms for impaired synaptic plasticity in schizophrenia revealed by computational modeling.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2312511121. doi: 10.1073/pnas.2312511121. Epub 2024 Aug 14.

本文引用的文献

1
Spike-timing-dependent synaptic plasticity depends on dendritic location.
Nature. 2005 Mar 10;434(7030):221-5. doi: 10.1038/nature03366.
2
Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity.
Biol Cybern. 2005 Feb;92(2):128-38. doi: 10.1007/s00422-004-0525-z. Epub 2005 Feb 4.
3
State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons.
Neuron. 2004 Oct 28;44(3):483-93. doi: 10.1016/j.neuron.2004.10.013.
4
Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat.
J Physiol. 2005 Jan 1;562(Pt 1):245-56. doi: 10.1113/jphysiol.2004.068460. Epub 2004 Oct 21.
5
Spike timing-dependent plasticity of neural circuits.
Neuron. 2004 Sep 30;44(1):23-30. doi: 10.1016/j.neuron.2004.09.007.
6
LTP and LTD: an embarrassment of riches.
Neuron. 2004 Sep 30;44(1):5-21. doi: 10.1016/j.neuron.2004.09.012.
7
Corticostriatal plasticity: life after the depression.
Trends Neurosci. 2004 Aug;27(8):460-7. doi: 10.1016/j.tins.2004.06.010.
8
Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices.
J Physiol. 2004 Aug 15;559(Pt 1):215-30. doi: 10.1113/jphysiol.2004.065672. Epub 2004 Jul 2.
9
Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus.
Nat Neurosci. 2004 Jul;7(7):719-25. doi: 10.1038/nn1272. Epub 2004 Jun 20.
10
Spike-dependent intrinsic plasticity increases firing probability in rat striatal neurons in vivo.
J Physiol. 2003 Aug 1;550(Pt 3):947-59. doi: 10.1113/jphysiol.2003.043125. Epub 2003 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验