Breuer Marian, Rosso Kevin M, Blumberger Jochen, Butt Julea N
Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
Pacific Northwest National Laboratory, Richland, WA, USA
J R Soc Interface. 2015 Jan 6;12(102):20141117. doi: 10.1098/rsif.2014.1117.
Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.
多种含血红素的细胞色素被一系列微生物用于在长达数十纳米的距离上传输电子。这些蛋白质最引人注目的应用可能是希瓦氏菌属和地杆菌属的某些物种对细胞外固体底物的还原作用,这些底物包括电极以及铁(III)和锰(III/IV)的不溶性矿物氧化物。然而,多种含血红素的细胞色素存在于众多且系统发育多样的原核生物中,它们参与电子转移和氧化还原催化,这在全球范围内对氮、硫和铁的生物地球化学循环有贡献。多种含血红素的细胞色素的这些特性引起了人们极大的兴趣,并推动了生物能源应用和污染土壤生物修复方面的进展。展望未来,存在将多种含血红素的细胞色素应用于生物光伏电池、微生物电合成以及开发定制分子装置的机会。因此,及时回顾我们目前对这些蛋白质的理解是很有必要的,我们在此进行回顾,重点关注嗜铁钩端螺旋菌MR-1中功能多样的多种含血红素的细胞色素。我们借鉴了实验方法和计算方法的研究结果,在这些系统的研究中,这两种方法理想地相互补充:计算方法可以根据分子结构来解释实验确定的特性,从而阐明结构与功能之间的关系。我们展示了这种协同作用如何有助于我们对多种含血红素的细胞色素的理解,并且有望继续如此,以便更深入地了解自然过程及其在生物技术中的明智利用。
J R Soc Interface. 2015-1-6
Adv Microb Physiol. 2004
Proc Natl Acad Sci U S A. 2021-9-28
J Am Chem Soc. 2018-8-2
Appl Environ Microbiol. 2007-11
J Biol Inorg Chem. 2008-8
Microorganisms. 2025-5-16
J Chem Inf Model. 2025-5-12
Appl Environ Microbiol. 2025-4-23
J Phys Chem B. 2024-9-19
Appl Environ Microbiol. 2024-7-24
Biofilm. 2024-3-25
Microbiol Spectr. 2024-4-2
J Chem Theory Comput. 2014-10-14
Nature. 2014-11-6
Proc Natl Acad Sci U S A. 2014-9-2
Proc Natl Acad Sci U S A. 2014-1-2
Acc Chem Res. 2013-8-28
J R Soc Interface. 2013-7-24