Suppr超能文献

希瓦氏菌MR-1中的多血红素细胞色素:结构、功能及应用前景

Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities.

作者信息

Breuer Marian, Rosso Kevin M, Blumberger Jochen, Butt Julea N

机构信息

Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.

Pacific Northwest National Laboratory, Richland, WA, USA

出版信息

J R Soc Interface. 2015 Jan 6;12(102):20141117. doi: 10.1098/rsif.2014.1117.

Abstract

Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

摘要

多种含血红素的细胞色素被一系列微生物用于在长达数十纳米的距离上传输电子。这些蛋白质最引人注目的应用可能是希瓦氏菌属和地杆菌属的某些物种对细胞外固体底物的还原作用,这些底物包括电极以及铁(III)和锰(III/IV)的不溶性矿物氧化物。然而,多种含血红素的细胞色素存在于众多且系统发育多样的原核生物中,它们参与电子转移和氧化还原催化,这在全球范围内对氮、硫和铁的生物地球化学循环有贡献。多种含血红素的细胞色素的这些特性引起了人们极大的兴趣,并推动了生物能源应用和污染土壤生物修复方面的进展。展望未来,存在将多种含血红素的细胞色素应用于生物光伏电池、微生物电合成以及开发定制分子装置的机会。因此,及时回顾我们目前对这些蛋白质的理解是很有必要的,我们在此进行回顾,重点关注嗜铁钩端螺旋菌MR-1中功能多样的多种含血红素的细胞色素。我们借鉴了实验方法和计算方法的研究结果,在这些系统的研究中,这两种方法理想地相互补充:计算方法可以根据分子结构来解释实验确定的特性,从而阐明结构与功能之间的关系。我们展示了这种协同作用如何有助于我们对多种含血红素的细胞色素的理解,并且有望继续如此,以便更深入地了解自然过程及其在生物技术中的明智利用。

相似文献

1
Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities.
J R Soc Interface. 2015 Jan 6;12(102):20141117. doi: 10.1098/rsif.2014.1117.
3
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
4
Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.
Mol Microbiol. 2007 Jul;65(1):12-20. doi: 10.1111/j.1365-2958.2007.05783.x.
6
Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?
Curr Opin Chem Biol. 2018 Dec;47:7-17. doi: 10.1016/j.cbpa.2018.06.007. Epub 2018 Jul 14.
7
Multiheme Cytochrome Mediated Redox Conduction through Shewanella oneidensis MR-1 Cells.
J Am Chem Soc. 2018 Aug 15;140(32):10085-10089. doi: 10.1021/jacs.8b05104. Epub 2018 Aug 2.
8
Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.
Appl Environ Microbiol. 2007 Nov;73(21):7003-12. doi: 10.1128/AEM.01087-07. Epub 2007 Jul 20.
10
Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window.
J Biol Inorg Chem. 2008 Aug;13(6):849-54. doi: 10.1007/s00775-008-0398-z. Epub 2008 Jun 25.

引用本文的文献

1
Periplasmic Protein Mobility for Extracellular Electron Transport in .
Microorganisms. 2025 May 16;13(5):1144. doi: 10.3390/microorganisms13051144.
2
Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex.
J Chem Inf Model. 2025 May 12;65(9):4568-4575. doi: 10.1021/acs.jcim.4c02382. Epub 2025 Apr 25.
3
Robust measurement of microbial reduction of graphene oxide nanoparticles using image analysis.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0036025. doi: 10.1128/aem.00360-25. Epub 2025 Mar 27.
4
Magnetic, conductive nanoparticles as building blocks for steerable micropillar-structured anodic biofilms.
Biofilm. 2024 Oct 3;8:100226. doi: 10.1016/j.bioflm.2024.100226. eCollection 2024 Dec.
6
Undulating Free Energy Landscapes Buffer Redox Chains from Environmental Fluctuations.
J Phys Chem B. 2024 Sep 19;128(37):8933-8945. doi: 10.1021/acs.jpcb.4c04637. Epub 2024 Sep 8.
7
Genetic Code Expansion in MR-1 Allows Site-Specific Incorporation of Bioorthogonal Functional Groups into a -Type Cytochrome.
ACS Synth Biol. 2024 Sep 20;13(9):2833-2843. doi: 10.1021/acssynbio.4c00248. Epub 2024 Aug 19.
8
Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0086324. doi: 10.1128/aem.00863-24. Epub 2024 Jun 20.
9
Elucidating the development of cooperative anode-biofilm-structures.
Biofilm. 2024 Mar 25;7:100193. doi: 10.1016/j.bioflm.2024.100193. eCollection 2024 Jun.
10
Extracellular organic disulfide reduction by MR-1.
Microbiol Spectr. 2024 Apr 2;12(4):e0408123. doi: 10.1128/spectrum.04081-23. Epub 2024 Feb 28.

本文引用的文献

1
Ultrafast Estimation of Electronic Couplings for Electron Transfer between π-Conjugated Organic Molecules.
J Chem Theory Comput. 2014 Oct 14;10(10):4653-60. doi: 10.1021/ct500527v. Epub 2014 Sep 5.
2
Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins.
Biotechniques. 2012 Apr 1;52(4):000113859. doi: 10.2144/000113859.
3
Architecture of mammalian respiratory complex I.
Nature. 2014 Nov 6;515(7525):80-84. doi: 10.1038/nature13686. Epub 2014 Sep 7.
4
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12883-8. doi: 10.1073/pnas.1410551111. Epub 2014 Aug 20.
6
The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-mineral interface.
FEBS Lett. 2014 May 21;588(10):1886-90. doi: 10.1016/j.febslet.2014.04.013. Epub 2014 Apr 18.
8
Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):611-6. doi: 10.1073/pnas.1316156111. Epub 2014 Jan 2.
9
Unveiling the details of electron transfer in multicenter redox proteins.
Acc Chem Res. 2014 Jan 21;47(1):56-65. doi: 10.1021/ar4000696. Epub 2013 Aug 28.
10
A hybrid approach to simulation of electron transfer in complex molecular systems.
J R Soc Interface. 2013 Jul 24;10(87):20130415. doi: 10.1098/rsif.2013.0415. Print 2013 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验