Suppr超能文献

接触线附近的细菌游动与氧气传输。

Bacterial swimming and oxygen transport near contact lines.

作者信息

Tuval Idan, Cisneros Luis, Dombrowski Christopher, Wolgemuth Charles W, Kessler John O, Goldstein Raymond E

机构信息

Institut Mediterrani d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain.

出版信息

Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2277-82. doi: 10.1073/pnas.0406724102. Epub 2005 Feb 7.

Abstract

Aerobic bacteria often live in thin fluid layers near solid-air-water contact lines, in which the biology of chemotaxis, metabolism, and cell-cell signaling is intimately connected to the physics of buoyancy, diffusion, and mixing. Using the geometry of a sessile drop, we demonstrate in suspensions of Bacillus subtilis the self-organized generation of a persistent hydrodynamic vortex that traps cells near the contact line. Arising from upward oxygentaxis and downward gravitational forcing, these dynamics are related to the Boycott effect in sedimentation and are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics. The vortex is shown to advectively enhance uptake of oxygen into the suspension, and the wedge geometry leads to a singularity in the chemotactic dynamics near the contact line.

摘要

需氧细菌通常生活在靠近固-气-水接触线的薄流体层中,在那里,趋化作用、新陈代谢和细胞间信号传导的生物学过程与浮力、扩散和混合的物理过程密切相关。利用静置液滴的几何形状,我们在枯草芽孢杆菌的悬浮液中证明了一种持续的流体动力学涡旋的自组织生成,该涡旋将细胞捕获在接触线附近。这些动力学源于向上的氧趋化作用和向下的重力作用,与沉降中的博伊科特效应有关,并由一个由氧扩散和消耗、趋化作用以及粘性流体动力学组成的数学模型进行定量解释。结果表明,该涡旋通过平流增强了氧气向悬浮液中的摄取,并且楔形几何形状导致接触线附近趋化动力学出现奇点。

相似文献

1
Bacterial swimming and oxygen transport near contact lines.接触线附近的细菌游动与氧气传输。
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2277-82. doi: 10.1073/pnas.0406724102. Epub 2005 Feb 7.
2
Self-concentration and large-scale coherence in bacterial dynamics.细菌动态中的自我聚集与大规模相干性。
Phys Rev Lett. 2004 Aug 27;93(9):098103. doi: 10.1103/PhysRevLett.93.098103. Epub 2004 Aug 24.
3
Reduction of viscosity in suspension of swimming bacteria.悬浮游动细菌中悬浮液的粘度降低。
Phys Rev Lett. 2009 Oct 2;103(14):148101. doi: 10.1103/PhysRevLett.103.148101. Epub 2009 Sep 29.
4
Physical properties of collective motion in suspensions of bacteria.悬浮细菌中集体运动的物理特性。
Phys Rev Lett. 2012 Dec 14;109(24):248109. doi: 10.1103/PhysRevLett.109.248109.
7
Confinement stabilizes a bacterial suspension into a spiral vortex.限制(约束)使细菌悬液稳定为螺旋涡旋。
Phys Rev Lett. 2013 Jun 28;110(26):268102. doi: 10.1103/PhysRevLett.110.268102. Epub 2013 Jun 24.
8
Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.细菌悬浮液的粘度:流体动力学相互作用与自激噪声。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):050904. doi: 10.1103/PhysRevE.83.050904. Epub 2011 May 16.
9
Consumption, supply and transport: self-organization without direct communication.
Math Comput Simul. 1996 Apr;40(3-4):359-70. doi: 10.1016/0378-4754(95)00043-7.

引用本文的文献

本文引用的文献

1
Microbial ecology comes of age and joins the general ecology community.微生物生态学已然成熟,并融入了普通生态学领域。
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):16983-4. doi: 10.1073/pnas.0407886101. Epub 2004 Nov 30.
3
Self-concentration and large-scale coherence in bacterial dynamics.细菌动态中的自我聚集与大规模相干性。
Phys Rev Lett. 2004 Aug 27;93(9):098103. doi: 10.1103/PhysRevLett.93.098103. Epub 2004 Aug 24.
4
Motion to form a quorum.成立法定人数的动议。
Science. 2003 Jul 11;301(5630):188. doi: 10.1126/science.1079805.
5
Small talk. Cell-to-cell communication in bacteria.闲聊。细菌中的细胞间通讯。
Cell. 2002 May 17;109(4):421-4. doi: 10.1016/s0092-8674(02)00749-3.
7
Contact line deposits in an evaporating drop.蒸发液滴中的接触线沉积物。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):756-65. doi: 10.1103/physreve.62.756.
8
Biofilm formation as microbial development.生物膜形成作为微生物发育过程。
Annu Rev Microbiol. 2000;54:49-79. doi: 10.1146/annurev.micro.54.1.49.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验