Tuval Idan, Cisneros Luis, Dombrowski Christopher, Wolgemuth Charles W, Kessler John O, Goldstein Raymond E
Institut Mediterrani d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2277-82. doi: 10.1073/pnas.0406724102. Epub 2005 Feb 7.
Aerobic bacteria often live in thin fluid layers near solid-air-water contact lines, in which the biology of chemotaxis, metabolism, and cell-cell signaling is intimately connected to the physics of buoyancy, diffusion, and mixing. Using the geometry of a sessile drop, we demonstrate in suspensions of Bacillus subtilis the self-organized generation of a persistent hydrodynamic vortex that traps cells near the contact line. Arising from upward oxygentaxis and downward gravitational forcing, these dynamics are related to the Boycott effect in sedimentation and are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics. The vortex is shown to advectively enhance uptake of oxygen into the suspension, and the wedge geometry leads to a singularity in the chemotactic dynamics near the contact line.
需氧细菌通常生活在靠近固-气-水接触线的薄流体层中,在那里,趋化作用、新陈代谢和细胞间信号传导的生物学过程与浮力、扩散和混合的物理过程密切相关。利用静置液滴的几何形状,我们在枯草芽孢杆菌的悬浮液中证明了一种持续的流体动力学涡旋的自组织生成,该涡旋将细胞捕获在接触线附近。这些动力学源于向上的氧趋化作用和向下的重力作用,与沉降中的博伊科特效应有关,并由一个由氧扩散和消耗、趋化作用以及粘性流体动力学组成的数学模型进行定量解释。结果表明,该涡旋通过平流增强了氧气向悬浮液中的摄取,并且楔形几何形状导致接触线附近趋化动力学出现奇点。