Suppr超能文献

钯钳形配合物催化的锡基和硅基转移至炔丙基底物:合成范围及机理

Palladium pincer complex catalyzed stannyl and silyl transfer to propargylic substrates: synthetic scope and mechanism.

作者信息

Kjellgren Johan, Sundén Henrik, Szabó Kálmán J

机构信息

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

J Am Chem Soc. 2005 Feb 16;127(6):1787-96. doi: 10.1021/ja043951b.

Abstract

Pincer complex catalyzed substitution of various propargylic substrates could be achieved using tin- and silicon-based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. These reactions involving chloride, mesylate, and epoxide substrates could be carried out under mild conditions, and therefore many functionalities (such as COOEt, OR, OH, NR, and NAc) are tolerated. It was shown that pincer catalysts with electron-supplying ligands, such as NCN, SCS, and SeCSe complexes, display the highest catalytic activity. The catalytic substitution of secondary propargyl chlorides and primary propargyl chlorides with electron-withdrawing substituents proceeds with high regioselectivity providing the allenyl product. Opening of the propargyl epoxides takes place with an excellent stereo- and regioselectivity to give stereodefined allenylstannanes. Silylstannanes as dimetallic reagents undergo an exclusive silyl transfer to the propargylic substrate affording allenylsilanes with high regioselectivity. According to our mechanistic studies, the key intermediate of the reaction is an organostannane (or silane)-coordinated pincer complex, which is formed from the dimetallic reagent and the corresponding pincer complex catalyst. DFT modeling studies have shown that the trimethylstannyl functionality is transferred to the propargylic substrate in a single reaction step with high allenyl selectivity. Inspection of the TS structures reveals that the trimethylstannyl group transfer is initiated by the attack of the palladium-tin sigma-bond electrons on the propargylic substrate. This is a novel mechanism in palladium chemistry, which is based on the unique topology of the pincer complex catalysts.

摘要

使用基于锡和硅的双金属试剂,可以实现钳形配合物催化的各种炔丙基底物的取代反应,以获得炔丙基锡烷和烯丙基锡烷以及硅烷。这些涉及氯化物、甲磺酸盐和环氧化物底物的反应可以在温和条件下进行,因此许多官能团(如COOEt、OR、OH、NR和NAc)都能耐受。结果表明,具有供电子配体的钳形催化剂,如NCN、SCS和SeCSe配合物,具有最高的催化活性。带有吸电子取代基的仲炔丙基氯化物和伯炔丙基氯化物的催化取代反应具有高区域选择性,生成烯丙基产物。炔丙基环氧化物的开环反应具有优异的立体和区域选择性,生成立体定向的烯丙基锡烷。作为双金属试剂的硅基锡烷会将硅基专一性转移到炔丙基底物上,以高区域选择性得到烯丙基硅烷。根据我们的机理研究,该反应的关键中间体是一种由双金属试剂和相应的钳形配合物催化剂形成的有机锡烷(或硅烷)配位的钳形配合物。密度泛函理论(DFT)建模研究表明,三甲基锡官能团在单一反应步骤中以高烯丙基选择性转移到炔丙基底物上。对过渡态(TS)结构的研究表明,三甲基锡基团的转移是由钯-锡σ键电子对炔丙基底物的进攻引发的。这是钯化学中的一种新机制,它基于钳形配合物催化剂的独特拓扑结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验