Luzia Laura, Battjes Julius, Zwering Emile, Jansen Derek, Melkonian Chrats, Teusink Bas
Systems Biology Lab, A-LIFE, Institute of Molecular and Life Sciences (AIMMS), VU Amsterdam, 1081HZ Amsterdam, the Netherlands.
Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
iScience. 2023 Dec 21;27(1):108767. doi: 10.1016/j.isci.2023.108767. eCollection 2024 Jan 19.
adjusts its metabolism based on nutrient availability, typically transitioning from glucose fermentation to ethanol respiration as glucose becomes limiting. However, our understanding of the regulation of metabolism is largely based on population averages, whereas nutrient transitions may cause heterogeneous responses. Here we introduce iCRAFT, a method that couples the ATP Förster resonance energy transfer (FRET)-based biosensor yAT1.03 with Antimycin A to differentiate fermentative and respiratory metabolisms in individual yeast cells. Upon Antimycin A addition, respiratory cells experienced a sharp decrease of the normalized FRET ratio, while respiro-fermentative cells showed no response. Next, we tracked changes in metabolism during the diauxic shift of a glucose pre-grown culture. Following glucose exhaustion, the entire cell population experienced a progressive rise in cytosolic ATP produced via respiration, suggesting a gradual increase in respiratory capacity. Overall, iCRAFT is a robust tool to distinguish fermentation from respiration, offering a new single-cell opportunity to study yeast metabolism.
它会根据营养物质的可利用性来调整其新陈代谢,通常在葡萄糖变得有限时从葡萄糖发酵转变为乙醇呼吸。然而,我们对新陈代谢调节的理解很大程度上基于群体平均值,而营养物质的转变可能会导致异质性反应。在这里,我们介绍了iCRAFT,一种将基于ATP荧光共振能量转移(FRET)的生物传感器yAT1.03与抗霉素A相结合的方法,以区分单个酵母细胞中的发酵代谢和呼吸代谢。添加抗霉素A后,呼吸细胞的归一化FRET比率急剧下降,而呼吸-发酵细胞则无反应。接下来,我们跟踪了葡萄糖预培养物在双相转变期间的代谢变化。葡萄糖耗尽后,整个细胞群体通过呼吸产生的胞质ATP逐渐增加,表明呼吸能力逐渐增强。总体而言,iCRAFT是一种区分发酵和呼吸的强大工具,为研究酵母代谢提供了一个新的单细胞机会。