Heise Henrike, Seidel Karsten, Etzkorn Manuel, Becker Stefan, Baldus Marc
Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
J Magn Reson. 2005 Mar;173(1):64-74. doi: 10.1016/j.jmr.2004.11.020.
Two types of 3D MAS NMR experiments are introduced, which combine standard (NC,CC) transfer schemes with (1H,1H) mixing to simultaneously detect connectivities and structural constraints of uniformly 15N,13C-labeled proteins with high spectral resolution. The homonuclear CCHHC and CCC experiments are recorded with one double-quantum evolution dimension in order to avoid a cubic diagonal in the spectrum. Depending on the second transfer step, spin systems or proton-proton contacts can be determined with reduced spectral overlap. The heteronuclear NHHCC experiment encodes NH-HC proton-proton interactions, which are indicative for the backbone conformation of the protein. The third dimension facilitates the identification of the amino acid spin system. Experimental results on U-[15N,13C]valine and U-[15N,13C]ubiquitin demonstrate their usefulness for resonance assignments and for the determination of structural constraints. Furthermore, we give a detailed analysis of alternative multidimensional sampling schemes and their effect on sensitivity and resolution.
介绍了两种类型的3D MAS NMR实验,它们将标准(NC、CC)转移方案与(1H,1H)混合相结合,以高光谱分辨率同时检测均匀15N、13C标记蛋白质的连接性和结构限制。同核CCHHC和CCC实验通过一个双量子演化维度进行记录,以避免光谱中出现立方对角线。根据第二个转移步骤,可以在光谱重叠减少的情况下确定自旋系统或质子-质子接触。异核NHHCC实验对NH-HC质子-质子相互作用进行编码,这对蛋白质的主链构象具有指示作用。第三个维度有助于识别氨基酸自旋系统。对U-[15N,13C]缬氨酸和U-[15N,13C]泛素的实验结果证明了它们在共振归属和结构限制测定方面的有用性。此外,我们对替代多维采样方案及其对灵敏度和分辨率的影响进行了详细分析。