Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA.
National High Magnetic Field Lab, Florida State University, Tallahassee, FL, USA.
J Biomol NMR. 2024 Jun;78(2):95-108. doi: 10.1007/s10858-024-00436-9. Epub 2024 Mar 23.
With the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited. Moreover, when an isotopically-enriched target protein is present at physiological levels, which typically range from low micromolar to nanomolar concentrations, the isotope content from the natural abundance isotopes in the cellular milieu can outnumber the isotope content of the target protein. Using isotopically enriched yeast prion protein, Sup35NM, diluted into natural abundance yeast lysates, we optimized sample composition. We found that modest cryoprotectant concentrations and fully protonated environments support efficient DNP. We experimentally validated theoretical calculations of the limit of specificity for an isotopically enriched protein in natural abundance cellular milieu. We establish that, using pulse sequences that are selective for adjacent NMR-active nuclei, proteins can be specifically detected in cellular milieu at concentrations in the hundreds of nanomolar. Finally, we find that maintaining native stoichiometries of the protein of interest to the components of the cellular environment may be important for proteins that make specific interactions with cellular constituents.
通过动态核极化 (DNP) 提高灵敏度,魔角旋转 (MAS) 固态 NMR 光谱实验可以达到检测非常低浓度蛋白质所需的灵敏度。这使得在其生物环境中保持与潜在相互作用物的天然化学计量比的情况下,可以对蛋白质进行结构研究,而无需对其进行修饰。然而,即使使用 DNP,实验仍然受到灵敏度的限制。此外,当目标蛋白质的同位素丰度在生理水平存在时,其浓度通常在低微摩尔到纳摩尔范围内,细胞环境中天然丰度同位素的同位素含量可能超过目标蛋白质的同位素含量。我们使用同位素丰度的酵母朊病毒蛋白 Sup35NM 稀释到天然丰度的酵母裂解物中,优化了样品组成。我们发现适量的冷冻保护剂浓度和完全质子化的环境支持有效的 DNP。我们通过实验验证了同位素丰度细胞环境中同位素丰度目标蛋白特异性的理论计算极限。我们确定,使用选择性相邻 NMR 活性核的脉冲序列,可以在数百纳摩尔的浓度下特异性地检测细胞环境中的蛋白质。最后,我们发现对于与细胞成分有特定相互作用的蛋白质,保持感兴趣蛋白质与细胞环境成分的天然化学计量比可能很重要。