Palmer Melissa R, Suiter Christopher L, Henry Geneive E, Rovnyak James, Hoch Jeffrey C, Polenova Tatyana, Rovnyak David
†Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States.
‡Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
J Phys Chem B. 2015 Jun 4;119(22):6502-15. doi: 10.1021/jp5126415. Epub 2015 May 18.
Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.
如果在间接维度中对衰减信号采用非连续增量进行采样(即非均匀采样,NUS),那么核磁共振波谱学中许多信息丰富的多维实验的信噪比(SNR)可提高约2倍。这项工作提供了正式的理论结果和应用,以解决有关NUS增强范围的主要问题。首先,我们引入了NUS灵敏度定理,即对任何指数衰减信号应用任何递减的采样密度,其灵敏度(每测量时间平方根的SNR)总是高于均匀采样(US)。几个例子将说明这个定理,并表明即使是保守地应用NUS也能显著提高灵敏度。接下来,我们转向均匀采样的一个严重限制:当演化时间(进而总实验时间)超过1.26T2(T2 = 信号衰减常数)时,均匀采样的SNR会降低。因此,将均匀采样扩展到超过1.26T2并不能同时提高SNR和分辨率。我们发现NUS可以消除这个限制,并引入了匹配NUS SNR定理:与信号衰减相匹配的指数采样密度总是能随着额外的演化时间提高SNR。尽管是针对特定情况证明的,但更广泛的NUS密度类别也能随着演化时间提高SNR。这些理论结果应用于一种可溶性植物天然产物和一种固体三肽(u-(13)C,(15)N-MLF)。这些正式结果清楚地表明了在间接nD-NMR维度中对衰减信号应用均匀采样的不足,支持更广泛地采用NUS。