Suppr超能文献

大于其各部分之和:结合模型进行有用的药物代谢及药物动力学/药物效应动力学(ADMET)预测

Greater than the sum of its parts: combining models for useful ADMET prediction.

作者信息

O'Brien Sean E, de Groot Marcel J

机构信息

Accelrys Inc., 10188 Telesis Court, Suite 100, San Diego, California 92121, USA.

出版信息

J Med Chem. 2005 Feb 24;48(4):1287-91. doi: 10.1021/jm049254b.

Abstract

In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) models are important tools in combating late-stage attrition in the drug discovery process. This work shows how ADMET models can be combined to tailor predictions depending on one's needs. We demonstrate how the judicious use of data and considered combination of predictions can produce models that provide truly useful answers. This approach is illustrated with the prediction of hERG channel blocking and cytochrome P450 2D6 inhibition, where combination of two predictive models (with >80% of compounds correctly predicted) resulted in models with even better predictive values (with >90% of compounds correctly predicted for those classes of interest).

摘要

计算机辅助的ADMET(吸收、分布、代谢、排泄和毒性)模型是药物研发过程中对抗后期研发失败的重要工具。这项工作展示了如何根据需求将ADMET模型结合起来进行定制预测。我们证明了明智地使用数据和经过深思熟虑的预测组合能够生成提供真正有用答案的模型。通过预测人乙醚相关基因(hERG)通道阻滞和细胞色素P450 2D6抑制作用对这种方法进行了说明,其中两个预测模型(对超过80%的化合物预测正确)的组合产生了预测值甚至更高的模型(对感兴趣的那些类别化合物,预测正确的比例超过90%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验