Center for Life Science Technologies, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan.
PLoS One. 2018 Jul 6;13(7):e0199348. doi: 10.1371/journal.pone.0199348. eCollection 2018.
The inhibition of the hERG potassium channel is closely related to the prolonged QT interval, and thus assessing this risk could greatly facilitate the development of therapeutic compounds and the withdrawal of hazardous marketed drugs. The recent increase in SAR information about hERG inhibitors in public databases has led to many successful applications of machine learning techniques to predict hERG inhibition. However, most of these reports constructed their prediction models based on only one SAR database because the differences in the data format and ontology hindered the integration of the databases. In this study, we curated the hERG-related data in ChEMBL, PubChem, GOSTAR, and hERGCentral, and integrated them into the largest database about hERG inhibition by small molecules. Assessment of structural diversity using Murcko frameworks revealed that the integrated database contains more than twice as many chemical scaffolds for hERG inhibitors than any of the individual databases, and covers 18.2% of the Murcko framework-based chemical space occupied by the compounds in ChEMBL. The database provides the most comprehensive information about hERG inhibitors and will be useful to design safer compounds for drug discovery. The database is freely available at http://drugdesign.riken.jp/hERGdb/.
hERG 钾通道的抑制与 QT 间期延长密切相关,因此评估这种风险可以极大地促进治疗化合物的开发和危险上市药物的撤市。最近,公共数据库中关于 hERG 抑制剂的 SAR 信息有所增加,这使得许多机器学习技术成功地应用于预测 hERG 抑制。然而,由于数据格式和本体的差异阻碍了数据库的集成,大多数报告都是基于一个 SAR 数据库构建其预测模型的。在本研究中,我们对 ChEMBL、PubChem、GOSTAR 和 hERGCentral 中的 hERG 相关数据进行了编目,并将其整合到小分子 hERG 抑制作用的最大数据库中。使用 Murcko 框架评估结构多样性表明,整合后的数据库包含的 hERG 抑制剂化学支架比任何单个数据库都多两倍以上,涵盖了 ChEMBL 中化合物占据的基于 Murcko 框架的化学空间的 18.2%。该数据库提供了有关 hERG 抑制剂的最全面信息,对于药物发现设计更安全的化合物将非常有用。该数据库可在 http://drugdesign.riken.jp/hERGdb/ 免费获取。