Suppr超能文献

构建用于药物发现早期决策的预测性ADMET模型。

Building predictive ADMET models for early decisions in drug discovery.

作者信息

Penzotti Julie E, Landrum Gregory A, Putta Santosh

机构信息

Rational Discovery LLC, 555 Bryant Street #467, Palo Alto, CA 94301, USA.

出版信息

Curr Opin Drug Discov Devel. 2004 Jan;7(1):49-61.

Abstract

This review discusses the current challenges facing researchers developing computational models to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) for early drug discovery. The strengths and weaknesses of different modeling approaches are reviewed and a survey of recent strategies to model several key ADMET parameters, including intestinal permeability, blood-brain barrier penetration, metabolism, bioavailability and drug toxicities, is presented.

摘要

本综述讨论了研究人员在开发用于早期药物发现的预测吸收、分布、代谢、排泄和毒性(ADMET)的计算模型时面临的当前挑战。回顾了不同建模方法的优缺点,并介绍了对几个关键ADMET参数进行建模的近期策略,包括肠道通透性、血脑屏障穿透性、代谢、生物利用度和药物毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验