Suppr超能文献

CAP与λ阻遏蛋白与同源DNA序列结合时的诱导契合及结构适应的熵

Induced fit and the entropy of structural adaptation in the complexation of CAP and lambda-repressor with cognate DNA sequences.

作者信息

Dixit Surjit B, Andrews David Q, Beveridge D L

机构信息

Chemistry Department and Molecular Biophysics Program, Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457-0280, USA.

出版信息

Biophys J. 2005 May;88(5):3147-57. doi: 10.1529/biophysj.104.053843. Epub 2005 Feb 24.

Abstract

Molecular dynamics (MD) simulations of 5 ns on protein-DNA complexes of catabolite-activator protein (CAP), lambda-repressor, and their corresponding uncomplexed protein and DNA, are reported. These cases represent two extremes of DNA bending, with CAP DNA bent severely and the lambda-operator nearly straight when complexed with protein. The calculations were performed using the AMBER suite of programs and the parm94 force field, validated for these studies by good agreement with experimental nuclear magnetic resonance data on DNA. An explicit computational model of structural adaptation and computation of the quasiharmonic entropy of association were obtained from the MD. The results indicate that, with respect to canonical B-form DNA, the extreme bending of the DNA in the complex with CAP is approximately 60% protein-induced and 40% intrinsic to the sequence-dependent structure of the free oligomer. The DNA in the complex is an energetically strained form, and the MD results are consistent with a conformational-capture mechanism. The calculated quasiharmonic entropy change accounts for the entropy difference between the two cases. The calculated entropy was decomposed into contributions from protein adaptation, DNA adaptation, and protein-DNA structural correlations. The origin of the entropy difference between CAP and lambda-repressor complexation arises more from the additional protein adaptation in the case of lambda, than to DNA bending and entropy contribution from DNA bending. The entropy arising from protein DNA cross-correlations, a contribution not previously discussed, is surprisingly large.

摘要

本文报道了对分解代谢物激活蛋白(CAP)、λ阻遏蛋白及其相应的未复合蛋白和DNA的蛋白质-DNA复合物进行的5纳秒分子动力学(MD)模拟。这些案例代表了DNA弯曲的两个极端情况,CAP与DNA复合时DNA严重弯曲,而λ操纵子与蛋白质复合时几乎是直的。计算使用AMBER程序套件和parm94力场进行,通过与DNA的实验核磁共振数据良好吻合,验证了这些研究。从MD中获得了结构适应的显式计算模型和缔合准谐熵的计算结果。结果表明,相对于标准B型DNA,与CAP复合的DNA中的极端弯曲约60%是由蛋白质诱导的,40%是自由寡聚体序列依赖性结构所固有的。复合物中的DNA是一种能量紧张的形式,MD结果与构象捕获机制一致。计算得到的准谐熵变解释了两种情况之间的熵差。计算得到的熵被分解为蛋白质适应、DNA适应和蛋白质-DNA结构相关性的贡献。CAP和λ阻遏蛋白络合之间熵差的起源更多地源于λ情况下额外的蛋白质适应,而不是DNA弯曲和DNA弯曲的熵贡献。蛋白质-DNA交叉相关性产生的熵,这是一个以前未讨论过的贡献,出奇地大。

相似文献

1
Induced fit and the entropy of structural adaptation in the complexation of CAP and lambda-repressor with cognate DNA sequences.
Biophys J. 2005 May;88(5):3147-57. doi: 10.1529/biophysj.104.053843. Epub 2005 Feb 24.
2
Axis curvature and ligand induced bending in the CAP-DNA oligomers.
Biophys J. 2005 Jan;88(1):L04-6. doi: 10.1529/biophysj.104.053058. Epub 2004 Nov 19.
3
A computational investigation of allostery in the catabolite activator protein.
J Am Chem Soc. 2007 Dec 19;129(50):15668-76. doi: 10.1021/ja076046a. Epub 2007 Nov 28.
5
Molecular dynamics simulation reveals sequence-intrinsic and protein-induced geometrical features of the OL1 DNA operator.
Biopolymers. 2001 Oct 5;59(4):205-25. doi: 10.1002/1097-0282(20011005)59:4<205::AID-BIP1019>3.0.CO;2-4.
6
The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.
J Biol Chem. 2015 Sep 4;290(36):22225-35. doi: 10.1074/jbc.M115.669267. Epub 2015 Jul 16.
7
Cold denaturation of a repressor-operator complex: the role of entropy in protein-DNA recognition.
Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8244-7. doi: 10.1073/pnas.91.17.8244.
8
Protein activity regulation by conformational entropy.
Nature. 2012 Aug 9;488(7410):236-40. doi: 10.1038/nature11271.
9
Opposite allosteric mechanisms in TetR and CAP.
Protein Sci. 2009 Apr;18(4):775-81. doi: 10.1002/pro.88.

引用本文的文献

1
Variable Regions of p53 Isoforms Allosterically Hard Code DNA Interaction.
J Phys Chem B. 2022 Oct 27;126(42):8495-8507. doi: 10.1021/acs.jpcb.2c06229. Epub 2022 Oct 16.
2
Mutagenic Activation of Glutathione Peroxidase-4: Approaches toward Rational Design of Allosteric Drugs.
ACS Omega. 2022 Aug 16;7(34):29587-29597. doi: 10.1021/acsomega.2c01289. eCollection 2022 Aug 30.
3
DNA Shape versus Sequence Variations in the Protein Binding Process.
Biophys J. 2016 Feb 2;110(3):534-544. doi: 10.1016/j.bpj.2015.11.3527.
4
Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers.
PLoS One. 2015 Sep 18;10(9):e0138392. doi: 10.1371/journal.pone.0138392. eCollection 2015.
5
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
J Comput Aided Mol Des. 2015 Mar;29(3):283-95. doi: 10.1007/s10822-014-9828-x. Epub 2015 Jan 10.
6
Computational design of thermostabilizing D-amino acid substitutions.
J Am Chem Soc. 2011 Nov 23;133(46):18750-9. doi: 10.1021/ja205609c. Epub 2011 Oct 27.
7
Comparing binding site information to binding affinity reveals that Crp/DNA complexes have several distinct binding conformers.
Nucleic Acids Res. 2011 Aug;39(15):6813-24. doi: 10.1093/nar/gkr369. Epub 2011 May 17.
8
Affinity and specificity of protein U1A-RNA complex formation based on an additive component free energy model.
J Mol Biol. 2007 Aug 31;371(5):1405-19. doi: 10.1016/j.jmb.2007.06.003. Epub 2007 Jun 9.
10
Simulation of non-specific protein-mRNA interactions.
Nucleic Acids Res. 2005 Nov 27;33(21):6694-9. doi: 10.1093/nar/gki981. Print 2005.

本文引用的文献

2
Ion motions in molecular dynamics simulations on DNA.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14771-5. doi: 10.1073/pnas.0406435101. Epub 2004 Oct 1.
3
Estimating entropies from molecular dynamics simulations.
J Chem Phys. 2004 Feb 8;120(6):2652-61. doi: 10.1063/1.1636153.
4
Simulation and modeling of nucleic acid structure, dynamics and interactions.
Curr Opin Struct Biol. 2004 Jun;14(3):360-7. doi: 10.1016/j.sbi.2004.05.001.
5
Catabolite activator protein: DNA binding and transcription activation.
Curr Opin Struct Biol. 2004 Feb;14(1):10-20. doi: 10.1016/j.sbi.2004.01.012.
6
Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting.
Biopolymers. 2004 Feb 15;73(3):380-403. doi: 10.1002/bip.20019.
7
Theoretical methods for the simulation of nucleic acids.
Chem Soc Rev. 2003 Nov;32(6):350-64. doi: 10.1039/b207226m.
8
New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
Curr Opin Struct Biol. 2003 Apr;13(2):175-83. doi: 10.1016/s0959-440x(03)00036-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验