Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey (UMDNJ) and Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA.
J Am Chem Soc. 2011 Nov 23;133(46):18750-9. doi: 10.1021/ja205609c. Epub 2011 Oct 27.
Judicious incorporation of D-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to D-alanine substitutions at the carboxy termini can stabilize α-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by D-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using D-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing D-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with D-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the α-helix C-terminus and throughout the protein.
明智地将 D-氨基酸纳入工程蛋白中可以带来许多优势,例如防止内源性蛋白酶降解,以及促进同源手性多肽无法获得的新型结构和功能。在羧基末端将甘氨酸替换为 D-丙氨酸可以通过降低构象熵来稳定α-螺旋。除了丙氨酸,我们还提出了 D-氨基酸取代赋予的稳定性的其他侧链效应。深入了解骨架和侧链相互作用对于开发使用 D-氨基酸提高蛋白质热稳定性的合理、广泛适用的策略非常重要。结构生物信息学的见解结合计算蛋白质设计可以成功指导选择稳定 D-氨基酸突变。用 D-Gln 替换 Trp-cage 迷你蛋白中的关键甘氨酸可以在不改变蛋白质骨架的情况下显著稳定折叠。可以根据在α-螺旋 C 末端和整个蛋白质中分子内力的平衡来理解单个取代的稳定性。