Paulmurugan Ramasamy, Gambhir Sanjiv S
Molecular Imaging Program at Stanford (MIPS), Department of Radiology and the Bio-X Program, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, East Wing, First Floor, Stanford, California 94305-5427, USA.
Anal Chem. 2005 Mar 1;77(5):1295-302. doi: 10.1021/ac0484777.
We identified different fragments of the firefly luciferase gene based on the crystal structure of firefly luciferase. These split reporter genes which encode for protein fragments, unlike the fragments currently used for studying protein-protein interactions, can self-complement and provide luciferase enzyme activity in different cell lines in culture and in living mice. The comparison of the fragment complementation associated recovery of firefly luciferase enzyme activity with intact firefly luciferase was estimated for different fragment combinations and ranged from 0.01 to 4% of the full firefly luciferase activity. Using a cooled optical charge-coupled device camera, the analysis of firefly luciferase fragment complementation in transiently transfected subcutaneous 293T cell implants in living mice showed significant detectable enzyme activity upon injecting d-luciferin, especially from the combinations of fragments identified (Nfluc and Cfluc are the N and C fragments of the firefly luciferase gene, respectively): Nfluc (1-475)/Cfluc (245-550), Nfluc (1-475)/Cfluc (265-550), and Nfluc (1-475)/Cfluc (300-550). The Cfluc (265-550) fragment, upon expression with the nuclear localization signal (NLS) peptide of SV40, shows reduced enzyme activity when the cells are cotransfected with the Nfluc (1-475) fragment expressed without NLS. We also proved in this study that the complementing fragments could be efficiently used for screening macromolecule delivery vehicles by delivering TAT-Cfluc (265-550) to cells stably expressing Nfluc (1-475) and recovering signal. These complementing fragments should be useful for many reporter-based assays including intracellular localization of proteins, studying cellular macromolecule delivery vehicles, studying cell-cell fusions, and also developing intracellular phosphorylation sensors based on fragment complementation.
我们基于萤火虫荧光素酶的晶体结构鉴定出了萤火虫荧光素酶基因的不同片段。这些编码蛋白质片段的分裂报告基因,与目前用于研究蛋白质 - 蛋白质相互作用的片段不同,能够自我互补,并在培养的不同细胞系以及活体小鼠中提供荧光素酶活性。针对不同的片段组合,对与完整萤火虫荧光素酶相关的萤火虫荧光素酶活性恢复的片段互补情况进行了比较,其范围为完整萤火虫荧光素酶活性的0.01%至4%。使用冷却的光学电荷耦合器件相机,对活体小鼠皮下瞬时转染的293T细胞植入物中的萤火虫荧光素酶片段互补进行分析,结果显示注射d - 荧光素后可检测到显著的酶活性,特别是来自所鉴定片段组合的情况(Nfluc和Cfluc分别是萤火虫荧光素酶基因的N端和C端片段):Nfluc (1 - 475)/Cfluc (245 - 550)、Nfluc (1 - 475)/Cfluc (265 - 550)和Nfluc (1 - 475)/Cfluc (300 - 550)。当Cfluc (265 - 550)片段与SV40的核定位信号(NLS)肽一起表达,而细胞与无NLS表达的Nfluc (1 - 475)片段共转染时,其酶活性降低。在本研究中我们还证明,通过将TAT - Cfluc (265 - 550)递送至稳定表达Nfluc (1 - 475)的细胞并恢复信号,互补片段可有效地用于筛选大分子递送载体。这些互补片段应可用于许多基于报告基因的检测,包括蛋白质的细胞内定位、研究细胞大分子递送载体、研究细胞 - 细胞融合,以及基于片段互补开发细胞内磷酸化传感器。