Handy Diane E, Zhang Yufeng, Loscalzo Joseph
Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
J Biol Chem. 2005 Apr 22;280(16):15518-25. doi: 10.1074/jbc.M501452200. Epub 2005 Feb 25.
Hyperhomocysteinemia contributes to vascular dysfunction and an increase in the risk of cardiovascular disease. An elevated level of homocysteine in vivo and in cell culture systems results in a decrease in the activity of cellular glutathione peroxidase (GPx1), an intracellular antioxidant enzyme that reduces hydrogen peroxide and lipid peroxides. In this study, we show that homocysteine interferes with GPx1 protein expression without affecting transcript levels. Expression of the selenocysteine (SEC)-containing GPx1 protein requires special translational cofactors to "read-through" a UGA-stop codon that specifies SEC incorporation at the active site of the enzyme. These factors include a selenocysteine incorporation sequence (SECIS) in the 3'-untranslated region of the GPx1 mRNA and cofactors involved in the biosynthesis and translational insertion of SEC. To monitor SEC incorporation, we used a reporter gene system that has a UGA codon within the protein-coding region of the luciferase mRNA. Addition of either the GPx1 or GPx3 SECIS element in the 3'-untranslated region of the luciferase gene stimulated read-through by 6-11-fold in selenium-replete cells; absence of selenium prevented translation. To alter cellular homocysteine production, we used methionine in the presence of aminopterin, a folate antagonist, co-administered with hypoxanthine and thymidine (HAT/Met). This treatment increased homocysteine levels in the media by 30% (p < 0.01) and decreased GPx1 enzyme activity by 45% (p = 0.0028). HAT/Met treatment decreased selenium-mediated read-through significantly (p < 0.001) in luciferase constructs containing the GPx1 or GPx3 SECIS element; most importantly, the suppression of selenium-dependent read-through was similar whether an SV40 promoter or the GPx1 promoter was used to drive transcription of the SECIS-containing constructs. Furthermore, HAT/Met had no effect on steady-state GPx1 mRNA levels but decreased GPx1 protein levels, suggesting that this effect is not transcriptionally mediated. These data support the conclusion that homocysteine decreases GPx1 activity by altering the translational mechanism essential for the synthesis of this selenocysteine-containing protein.
高同型半胱氨酸血症会导致血管功能障碍,并增加心血管疾病的风险。体内和细胞培养系统中同型半胱氨酸水平升高会导致细胞内谷胱甘肽过氧化物酶(GPx1)的活性降低,GPx1是一种细胞内抗氧化酶,可还原过氧化氢和脂质过氧化物。在本研究中,我们发现同型半胱氨酸会干扰GPx1蛋白的表达,而不影响转录水平。含硒代半胱氨酸(SEC)的GPx1蛋白的表达需要特殊的翻译辅因子来“通读”UGA终止密码子,该密码子指定SEC掺入酶的活性位点。这些因子包括GPx1 mRNA 3'非翻译区中的硒代半胱氨酸掺入序列(SECIS)以及参与SEC生物合成和翻译插入的辅因子。为了监测SEC的掺入,我们使用了一个报告基因系统,该系统在荧光素酶mRNA的蛋白质编码区内有一个UGA密码子。在荧光素酶基因的3'非翻译区添加GPx1或GPx3 SECIS元件可使富硒细胞中的通读增加6至11倍;缺乏硒会阻止翻译。为了改变细胞内同型半胱氨酸生成,我们在氨基蝶呤(一种叶酸拮抗剂)存在的情况下使用甲硫氨酸,并与次黄嘌呤和胸腺嘧啶核苷共同给药(HAT/Met)。这种处理使培养基中的同型半胱氨酸水平提高了30%(p < 0.01),并使GPx1酶活性降低了45%(p = 0.0028)。在含有GPx1或GPx3 SECIS元件的荧光素酶构建体中,HAT/Met处理显著降低了硒介导的通读(p < 0.001);最重要的是,无论使用SV40启动子还是GPx1启动子来驱动含SECIS构建体的转录,对硒依赖性通读的抑制作用都是相似的。此外,HAT/Met对稳态GPx1 mRNA水平没有影响,但降低了GPx1蛋白水平,这表明这种作用不是由转录介导的。这些数据支持这样的结论,即同型半胱氨酸通过改变合成这种含硒代半胱氨酸蛋白所必需的翻译机制来降低GPx1活性。