Suppr超能文献

基于视频的神经精神疾病自动面部表情分析

Automated video-based facial expression analysis of neuropsychiatric disorders.

作者信息

Wang Peng, Barrett Frederick, Martin Elizabeth, Milonova Marina, Gur Raquel E, Gur Ruben C, Kohler Christian, Verma Ragini

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J Neurosci Methods. 2008 Feb 15;168(1):224-38. doi: 10.1016/j.jneumeth.2007.09.030. Epub 2007 Oct 5.

Abstract

Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger's syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video-based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits.

摘要

情绪表达缺陷在包括精神分裂症在内的多种神经精神疾病中很突出。现有的临床面部表情评估提供的是主观和定性的测量,这些测量基于静态二维图像,无法捕捉表情变化的时间动态和细微差别。因此,需要对使用视频捕捉的面部表情进行自动化、客观和定量的测量。本文提出了一个计算框架,该框架可为视频数据创建概率性表情概况,并有可能有助于自动量化神经精神疾病患者与健康对照之间的情绪表达差异。我们的方法自动检测并跟踪视频中的面部标志点,然后提取几何特征以表征面部表情变化。为了分析面部表情的时间变化,我们采用概率分类器,该分类器分析单个帧中的面部表情,然后在整个视频中传播概率以捕捉面部表情的时间特征。我们的方法在健康对照以及精神分裂症和阿斯伯格综合征患者的案例研究中的应用,证明了基于视频的表情分析方法捕捉面部表情细微差别的能力。这些结果可为基于视频的方法在导致情感缺陷的疾病临床研究中对面部表情进行定量分析铺平道路。

相似文献

1
Automated video-based facial expression analysis of neuropsychiatric disorders.基于视频的神经精神疾病自动面部表情分析
J Neurosci Methods. 2008 Feb 15;168(1):224-38. doi: 10.1016/j.jneumeth.2007.09.030. Epub 2007 Oct 5.
4
Fully automatic recognition of the temporal phases of facial actions.面部动作时间阶段的全自动识别。
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):28-43. doi: 10.1109/TSMCB.2011.2163710. Epub 2011 Sep 15.

引用本文的文献

本文引用的文献

1
Recognizing Action Units for Facial Expression Analysis.用于面部表情分析的动作单元识别
IEEE Trans Pattern Anal Mach Intell. 2001 Feb;23(2):97-115. doi: 10.1109/34.908962.
2
The evidence framework applied to support vector machines.应用于支持向量机的证据框架。
IEEE Trans Neural Netw. 2000;11(5):1162-73. doi: 10.1109/72.870047.
3
A comparison of methods for multiclass support vector machines.多类支持向量机方法的比较
IEEE Trans Neural Netw. 2002;13(2):415-25. doi: 10.1109/72.991427.
5
Computerized measurement of facial expression of emotions in schizophrenia.精神分裂症患者面部表情情绪的计算机化测量
J Neurosci Methods. 2007 Jul 30;163(2):350-61. doi: 10.1016/j.jneumeth.2007.03.002. Epub 2007 Mar 12.
7
FloatBoost learning and statistical face detection.浮动增强学习与统计面部检测。
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1112-23. doi: 10.1109/TPAMI.2004.68.
9
Differences in facial expressions of four universal emotions.四种普遍情绪的面部表情差异。
Psychiatry Res. 2004 Oct 30;128(3):235-44. doi: 10.1016/j.psychres.2004.07.003.
10
FAME--a flexible appearance modeling environment.FAME——一个灵活的外观建模环境。
IEEE Trans Med Imaging. 2003 Oct;22(10):1319-31. doi: 10.1109/tmi.2003.817780.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验