Suppr超能文献

似然性、简约性与异质性进化

Likelihood, parsimony, and heterogeneous evolution.

作者信息

Spencer Matthew, Susko Edward, Roger Andrew J

出版信息

Mol Biol Evol. 2005 May;22(5):1161-4. doi: 10.1093/molbev/msi123. Epub 2005 Mar 2.

Abstract

Evolutionary rates vary among sites and across the phylogenetic tree (heterotachy). A recent analysis suggested that parsimony can be better than standard likelihood at recovering the true tree given heterotachy. The authors recommended that results from parsimony, which they consider to be nonparametric, be reported alongside likelihood results. They also proposed a mixture model, which was inconsistent but better than either parsimony or standard likelihood under heterotachy. We show that their main conclusion is limited to a special case for the type of model they study. Their mixture model was inconsistent because it was incorrectly implemented. A useful nonparametric model should perform well over a wide range of possible evolutionary models, but parsimony does not have this property. Likelihood-based methods are therefore the best way to deal with heterotachy.

摘要

进化速率在不同位点以及整个系统发育树中有所不同(异速进化)。最近的一项分析表明,在存在异速进化的情况下,在恢复真实树方面,简约法可能比标准似然法表现更好。作者建议,应将他们认为是非参数性的简约法结果与似然法结果一同报告。他们还提出了一个混合模型,该模型不一致,但在异速进化情况下比简约法或标准似然法都要好。我们表明,他们的主要结论仅限于他们所研究的模型类型的一种特殊情况。他们的混合模型不一致,因为实施有误。一个有用的非参数模型应该在广泛的可能进化模型中表现良好,但简约法并不具备这一特性。因此,基于似然法的方法是处理异速进化的最佳方式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验