Suppr超能文献

概率与预测:科学问题解决技能发展的建模

Probabilities and predictions: modeling the development of scientific problem-solving skills.

作者信息

Stevens Ron, Johnson David F, Soller Amy

机构信息

UCLA IMMEX Project, 5601 W. Slauson Avenue, Suite 255, Culver City, CA 90230, USA.

出版信息

Cell Biol Educ. 2005 Spring;4(1):42-57. doi: 10.1187/cbe.04-03-0036.

Abstract

The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning.

摘要

IMMEX(交互式多媒体练习)基于网络的问题集平台能够在线提供复杂的多媒体模拟,快速收集学生的表现数据,并且已经在多个基因模拟中得到应用。下一步是利用这些数据以形成性的方式理解和改善学生的学习。本文描述了大学生分子遗传学问题解决概率模型的开发,该模型详细说明了学生在解决问题时所使用的策略范围,以及这些策略性方法如何随着经验而演变。记录并分析了来自三门分子生物学讲座课程的776名大学二年级生物学专业学生的行为。六个模拟中的每一个首先通过人工神经网络聚类进行分组,以提供个体表现度量,然后通过隐马尔可夫模型对这些表现序列进行概率建模,以提供进步度量。模型表明,具有不同初始问题解决能力的学生选择不同的策略。同一课程不同部分的初始和最终策略各不相同,并且与其他成绩度量没有很强的相关性。与先前的研究不同,我们没有观察到显著的性别差异。我们建议,基于学生早期在这些模拟中的表现进行教师干预,可能有助于学生认识到有效和高效的问题解决策略,并增强学习效果。

相似文献

1
Probabilities and predictions: modeling the development of scientific problem-solving skills.
Cell Biol Educ. 2005 Spring;4(1):42-57. doi: 10.1187/cbe.04-03-0036.
3
Design and performance frameworks for constructing problem-solving simulations.
Cell Biol Educ. 2003 Fall;2(3):162-79. doi: 10.1187/cbe.03-02-0006.
4
Variations in Student Approaches to Problem Solving in Undergraduate Biology Education.
CBE Life Sci Educ. 2024 Jun;23(2):ar12. doi: 10.1187/cbe.23-02-0033.
8
Cooperative Group Learning in Undergraduate Neuroscience: Using Simulations to Complement Problem-Solving Assignments.
J Undergrad Neurosci Educ. 2021 Jun 20;19(2):A201-A209. eCollection 2021 Spring.
10
The use of an active learning approach in a SCALE-UP learning space improves academic performance in undergraduate General Biology.
PLoS One. 2018 May 24;13(5):e0197916. doi: 10.1371/journal.pone.0197916. eCollection 2018.

引用本文的文献

1
Analyzing Sequence Data with Markov Chain Models in Scientific Experiments.
SN Comput Sci. 2021;2(5):385. doi: 10.1007/s42979-021-00768-5. Epub 2021 Jul 21.

本文引用的文献

2
Cognitive skill acquisition.
Annu Rev Psychol. 1996;47:513-39. doi: 10.1146/annurev.psych.47.1.513.
3
Design and performance frameworks for constructing problem-solving simulations.
Cell Biol Educ. 2003 Fall;2(3):162-79. doi: 10.1187/cbe.03-02-0006.
4
Assessing student learning.
Cell Biol Educ. 2002 Spring;1(1):11-5. doi: 10.1187/cbe.02-03-0007.
5
Artificial neural networks can distinguish novice and expert strategies during complex problem solving.
J Am Med Inform Assoc. 1996 Mar-Apr;3(2):131-8. doi: 10.1136/jamia.1996.96236281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验