Hennings Pablo, Thornton Jason, Kovacević Jelena, Vijaya Kumar B V K
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.
Appl Opt. 2005 Feb 10;44(5):637-46. doi: 10.1364/ao.44.000637.
We introduce wavelet packet correlation filter classifiers. Correlation filters are traditionally designed in the image domain by minimization of some criterion function of the image training set. Instead, we perform classification in wavelet spaces that have training set representations that provide better solutions to the optimization problem in the filter design. We propose a pruning algorithm to find these wavelet spaces by using a correlation energy cost function, and we describe a match score fusion algorithm for applying the filters trained across the packet tree. The proposed classification algorithm is suitable for any object-recognition task. We present results by implementing a biometric recognition system that uses the NIST 24 fingerprint database, and show that applying correlation filters in the wavelet domain results in considerable improvement of the standard correlation filter algorithm.
我们引入了小波包相关滤波器分类器。传统上,相关滤波器是在图像域中通过最小化图像训练集的某个准则函数来设计的。相反,我们在小波空间中进行分类,在小波空间中训练集的表示为滤波器设计中的优化问题提供了更好的解决方案。我们提出了一种剪枝算法,通过使用相关能量代价函数来找到这些小波空间,并且我们描述了一种匹配分数融合算法,用于应用在包树中训练的滤波器。所提出的分类算法适用于任何目标识别任务。我们通过实现一个使用美国国家标准与技术研究院(NIST)24指纹数据库的生物识别系统来展示结果,并表明在小波域中应用相关滤波器会使标准相关滤波器算法有显著改进。