Suppr超能文献

毛孔和纹路:使用三级特征进行高分辨率指纹匹配。

Pores and ridges: high-resolution fingerprint matching using level 3 features.

作者信息

Jain Anil K, Chen Yi, Demirkus Meltem

机构信息

Department of Computer Science and Engineering, Michigan State University, 3115 Engineering Building, East Lansing, MI 48824-1226, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):15-27. doi: 10.1109/tpami.2007.250596.

Abstract

Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, Level 1 (pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of Level 3 features to assist in identification, Automated Fingerprint Identification Systems (AFIS) currently rely only on Level 1 and Level 2 features. In fact, the Federal Bureau of Investigation's (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is inadequate for capturing Level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study to determine how much performance gain one can achieve by introducing Level 3 features in AFIS is highly desired. We propose a hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features, including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using the Iterative Closest Point (ICP) algorithm. Our experiments show that Level 3 features carry significant discriminatory information. There is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when Level 3 features are employed in combination with Level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint images.

摘要

指纹摩擦嵴细节通常按三个不同级别以层次顺序进行描述,即一级(模式)、二级(细节点)和三级(毛孔和嵴轮廓)。尽管潜在指纹检验员经常利用三级特征来辅助识别,但自动指纹识别系统(AFIS)目前仅依赖一级和二级特征。事实上,联邦调查局(FBI)为AFIS制定的指纹分辨率标准是每英寸500像素(ppi),这不足以捕捉三级特征,如毛孔。随着指纹传感技术的进步,现在许多传感器都具备双分辨率(500 ppi/1000 ppi)扫描能力。然而,仅提高扫描分辨率不一定能在指纹匹配方面带来任何性能提升,除非使用扩展的特征集。因此,非常需要进行一项系统研究,以确定在AFIS中引入三级特征能实现多大的性能提升。我们提出了一种分层匹配系统,该系统利用从1000 ppi指纹扫描中提取的所有三个级别的特征。三级特征,包括毛孔和嵴轮廓,使用Gabor滤波器和小波变换自动提取,并使用迭代最近点(ICP)算法进行局部匹配。我们实验表明,三级特征携带显著的鉴别信息。当三级特征与一级和二级特征结合使用时,匹配系统的等错误率(EER)相对降低了20%。在各种质量的指纹图像中都一致观察到了这种显著的性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验