Suppr超能文献

大分子结构与性质的压缩表示

Compressed representations of macromolecular structures and properties.

作者信息

Bajaj Chandrajit, Castrillon-Candas Julio, Siddavanahalli Vinay, Xu Zaiqing

机构信息

Computational Visualization Center, Department of Computer Sciences and, Institute for Computational and Engineering Sciences, ACES 2.128, 24th & Speedway, University of Texas, Austin, Texas 78712, USA.

出版信息

Structure. 2005 Mar;13(3):463-71. doi: 10.1016/j.str.2005.02.004.

Abstract

We introduce a new and unified, compressed volumetric representation for macromolecular structures at varying feature resolutions, as well as for many computed associated properties. Important caveats of this compressed representation are fast random data access and decompression operations. Many computational tasks for manipulating large structures, including those requiring interactivity such as real-time visualization, are greatly enhanced by utilizing this compact representation. The compression scheme is obtained by using a custom designed hierarchical wavelet basis construction. Due to the continuity offered by these wavelets, we retain very good accuracy of molecular surfaces, at very high compression ratios, for macromolecular structures at multiple resolutions.

摘要

我们引入了一种全新且统一的压缩体积表示法,用于表示不同特征分辨率下的大分子结构以及许多计算得到的相关属性。这种压缩表示法的重要注意事项是快速随机数据访问和解压缩操作。利用这种紧凑表示法,许多用于处理大型结构的计算任务,包括那些需要交互性(如实时可视化)的任务,都得到了极大的提升。压缩方案是通过使用定制设计的分层小波基构造获得的。由于这些小波提供的连续性,对于多种分辨率下的大分子结构,我们在非常高的压缩率下仍能保持分子表面的高精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验