Suppr超能文献

利用热解亚稳原子轰击质谱联用多元统计和人工神经网络模式识别技术对肠炎沙门氏菌菌株进行快速表型特征分析。

Rapid phenotypic characterization of Salmonella enterica strains by pyrolysis metastable atom bombardment mass spectrometry with multivariate statistical and artificial neural network pattern recognition.

作者信息

Wilkes Jon G, Rushing Larry, Nayak Rajesh, Buzatu Dan A, Sutherland John B

机构信息

National Center for Toxicological Research, FDA, 3900 NCTR Drive, Jefferson, AR 72079, USA.

出版信息

J Microbiol Methods. 2005 Jun;61(3):321-34. doi: 10.1016/j.mimet.2004.12.016.

Abstract

Pyrolysis mass spectrometry was investigated for rapid characterization of bacteria. Spectra of Salmonella were compared to their serovars, pulsed-field gel electrophoresis (PFGE) patterns, antibiotic resistance profiles, and MIC values. Pyrolysis mass spectra generated via metastable atom bombardment were analyzed by multivariate principal component-discriminant analysis and artificial neural networks (ANNs). Spectral patterns developed by discriminant analysis and tested with Leave-One-Out (LOO) cross-validation distinguished Salmonella strains by serovar (97% correct) and by PFGE groups (49%). An ANN model of the same PFGE groups was cross-validated, using the LOO rule, with 92% agreement. Using an ANN, thirty previously unseen spectra were correctly classified by serotype (97%) and at the PFGE level (67%). Attempts by ANN to model spectra grouped by resistance profile-but ignoring PFGE or serotype-failed (10% correct), but ANNs differentiating ten samples of the same serotype/PFGE class were more successful. To assess the information content of PyMS data serendipitously associated with or directly related to resistance character, the ten isolates were grouped into four, three, or two categories. The four categories corresponded to four resistance profiles. The four class and three class ANNs showed much improved but insufficient modeling power. The two-class ANN and a corresponding multivariate model maximized inferential power for a coarse antibiotic-resistance-related distinction. They each cross-validated by LOO at 90%. This is the first direct correlation of pyrolysis metastable atom bombardment mass spectrometry with immunological (e.g. serology) or molecular biology (e.g. PFGE) based techniques.

摘要

研究了热解质谱法用于细菌的快速表征。将沙门氏菌的光谱与其血清型、脉冲场凝胶电泳(PFGE)图谱、抗生素抗性谱和最低抑菌浓度(MIC)值进行了比较。通过亚稳原子轰击产生的热解质谱通过多变量主成分判别分析和人工神经网络(ANN)进行分析。通过判别分析开发并使用留一法(LOO)交叉验证进行测试的光谱模式能够按血清型(97%正确)和PFGE组(49%)区分沙门氏菌菌株。使用LOO规则对相同PFGE组的ANN模型进行交叉验证,一致性为92%。使用ANN,三十个先前未见过的光谱按血清型(97%)和PFGE水平(67%)被正确分类。ANN尝试对按抗性谱分组但忽略PFGE或血清型的光谱进行建模失败(10%正确),但区分相同血清型/PFGE类别的十个样本的ANN更成功。为了评估与抗性特征偶然相关或直接相关的热解质谱数据的信息含量,将十个分离株分为四类、三类或两类。这四类对应于四种抗性谱。四类和三类的ANN显示出建模能力有很大提高但仍不足。两类ANN和相应的多变量模型在与抗生素抗性相关的粗略区分方面最大化了推理能力。它们各自通过LOO交叉验证的准确率为90%。这是热解亚稳原子轰击质谱法与基于免疫学(如血清学)或分子生物学(如PFGE)的技术的首次直接关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验