Suppr超能文献

结构多样的化合物的配体结合自由能。

Free energies of ligand binding for structurally diverse compounds.

作者信息

Oostenbrink Chris, van Gunsteren Wilfred F

机构信息

Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2005 May 10;102(19):6750-4. doi: 10.1073/pnas.0407404102. Epub 2005 Mar 14.

Abstract

The one-step perturbation approach is an efficient means to calculate many relative free energies from a common reference compound. Combining lessons learned in previous studies, an application of the method is presented that allows for the calculation of relative binding free energies for structurally rather diverse compounds from only a few simulations. Based on the well known statistical-mechanical perturbation formula, the results do not require any empirical parameters, or training sets, only limited knowledge of the binding characteristics of the ligands suffices to design appropriate reference compounds. Depending on the choice of reference compound, relative free energies of binding rigid ligands to the ligand-binding domain of the estrogen receptor can be obtained that show good agreement with the experimental values. The approach presented here can easily be applied to many rigid ligands, and it should be relatively easy to extend the method to account for ligand flexibility. The free-energy calculations can be straightforwardly parallelized, allowing for an efficient means to understand and predict relative binding free energies.

摘要

一步扰动方法是一种从共同参考化合物计算多个相对自由能的有效手段。结合以往研究中吸取的经验教训,本文介绍了该方法的一种应用,该应用允许仅通过少量模拟来计算结构上相当多样的化合物的相对结合自由能。基于著名的统计力学扰动公式,结果不需要任何经验参数或训练集,只需对配体的结合特性有有限的了解就足以设计合适的参考化合物。根据参考化合物的选择,可以获得刚性配体与雌激素受体配体结合域的相对结合自由能,这些结果与实验值显示出良好的一致性。这里提出的方法可以很容易地应用于许多刚性配体,并且将该方法扩展以考虑配体的灵活性应该相对容易。自由能计算可以直接并行化,从而提供一种理解和预测相对结合自由能的有效手段。

相似文献

1
Free energies of ligand binding for structurally diverse compounds.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6750-4. doi: 10.1073/pnas.0407404102. Epub 2005 Mar 14.
6
CoMSIA and docking study of rhenium based estrogen receptor ligand analogs.
Steroids. 2007 Mar;72(3):247-60. doi: 10.1016/j.steroids.2006.11.011. Epub 2007 Feb 5.
7
Path-integral method for predicting relative binding affinities of protein-ligand complexes.
J Am Chem Soc. 2009 Apr 1;131(12):4521-8. doi: 10.1021/ja807460s.
8
Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
J Chem Theory Comput. 2017 Jul 11;13(7):3260-3275. doi: 10.1021/acs.jctc.7b00275. Epub 2017 Jun 13.
9
AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening.
BMC Bioinformatics. 2008 Oct 16;9:438. doi: 10.1186/1471-2105-9-438.
10
Comparison of estrogen receptor alpha and beta subtypes based on comparative molecular field analysis (CoMFA).
SAR QSAR Environ Res. 1999;10(2-3):215-37. doi: 10.1080/10629369908039177.

引用本文的文献

1
Benchmarking the Drude Polarizable Force Field Using the r(GACC) Tetranucleotide.
J Chem Inf Model. 2023 Apr 24;63(8):2505-2511. doi: 10.1021/acs.jcim.3c00250. Epub 2023 Mar 30.
2
Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom.
J Chem Inf Model. 2023 Jan 9;63(1):197-207. doi: 10.1021/acs.jcim.2c01272. Epub 2022 Dec 13.
3
Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field.
J Chem Theory Comput. 2022 Apr 12;18(4):2388-2407. doi: 10.1021/acs.jctc.2c00115. Epub 2022 Apr 1.
5
CHARMM-GUI Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field.
J Comput Chem. 2022 Feb 15;43(5):359-375. doi: 10.1002/jcc.26795. Epub 2021 Dec 7.
6
Efficient Saturation Mutagenesis of a Member of the Caspase Protease Family.
J Chem Inf Model. 2021 Mar 22;61(3):1193-1203. doi: 10.1021/acs.jcim.0c01216. Epub 2021 Feb 11.
7
Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery.
J Chem Inf Model. 2020 Nov 23;60(11):5595-5623. doi: 10.1021/acs.jcim.0c00613. Epub 2020 Sep 16.
8
Optimization of Protein-Ligand Electrostatic Interactions Using an Alchemical Free-Energy Method.
J Chem Theory Comput. 2019 Nov 12;15(11):6504-6512. doi: 10.1021/acs.jctc.9b00976. Epub 2019 Oct 23.
9
Implicit ligand theory for relative binding free energies.
J Chem Phys. 2018 Mar 14;148(10):104114. doi: 10.1063/1.5017136.
10
Using the fast fourier transform in binding free energy calculations.
J Comput Chem. 2018 Apr 30;39(11):621-636. doi: 10.1002/jcc.25139. Epub 2017 Dec 22.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验