Keating Lisa A, Wheeler Paul R, Mansoor Huma, Inwald Jacqueline K, Dale James, Hewinson R Glyn, Gordon Stephen V
TB Research Group, Veterinary Laboratories Agency Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
Mol Microbiol. 2005 Apr;56(1):163-74. doi: 10.1111/j.1365-2958.2005.04524.x.
Through examination of one of the fundamental in vitro characteristics of Mycobacterium bovis--its requirement for pyruvate in glycerol medium--we have revealed a lesion in central metabolism that has profound implications for in vivo growth and nutrition. Not only is M. bovis unable to use glycerol as a sole carbon source but the lack of a functioning pyruvate kinase (PK) means that carbohydrates cannot be used to generate energy. This disruption in sugar catabolism is caused by a single nucleotide polymorphism in pykA, the gene which encodes PK, that substitutes glutamic acid residue 220 with an aspartic acid residue. Substitution of this highly conserved amino acid residue renders PK inactive and thus blocks the ATP generating roles of glycolysis and the pentose phosphate pathway. This mutation was found to occur in other members of the M. tuberculosis complex, namely M. microti and M. africanum. With carbohydrates unable to act as carbon sources, the importance of lipids and gluconeogenesis for growth in vivo becomes apparent. Complementation of M. bovis with the pykA gene from M. tuberculosis H37Rv restored growth on glycerol. Additionally, the presence of a functioning PK caused the colony morphology of the complemented strain to change from the characteristic dysgonic growth of M. bovis to eugonic growth, an appearance normally associated with M. tuberculosis. We also suggest that the glycerol-soaked potato slices used for the derivation of the M. bovis bacillus Calmette and Guérin (BCG) vaccine strain selected for an M. bovis PK+ mutant, a finding that explains the alteration in colony morphology noted during the derivation of BCG. In summary, the disruption of a key step in glycolysis divides the M. tuberculosis complex into two groups with distinct carbon source utilization.
通过研究牛分枝杆菌的一项基本体外特性——其在甘油培养基中对丙酮酸的需求,我们揭示了中央代谢中的一个损伤,这对体内生长和营养具有深远影响。牛分枝杆菌不仅无法将甘油作为唯一碳源使用,而且缺乏有功能的丙酮酸激酶(PK)意味着碳水化合物不能用于产生能量。糖分解代谢的这种破坏是由编码PK的基因pykA中的一个单核苷酸多态性引起的,该多态性将谷氨酸残基220替换为天冬氨酸残基。这个高度保守的氨基酸残基的替换使PK失活,从而阻断了糖酵解和磷酸戊糖途径产生ATP的作用。发现这种突变也发生在结核分枝杆菌复合群的其他成员中,即田鼠分枝杆菌和非洲分枝杆菌。由于碳水化合物无法作为碳源,脂质和糖异生在体内生长中的重要性变得明显。用结核分枝杆菌H37Rv的pykA基因对牛分枝杆菌进行互补,恢复了其在甘油上的生长。此外,有功能的PK的存在导致互补菌株的菌落形态从牛分枝杆菌特有的生长不良变为生长良好,这种外观通常与结核分枝杆菌相关。我们还认为,用于牛分枝杆菌卡介苗(BCG)疫苗株衍生的甘油浸泡土豆片选择了牛分枝杆菌PK+突变体,这一发现解释了在BCG衍生过程中注意到的菌落形态变化。总之,糖酵解关键步骤的破坏将结核分枝杆菌复合群分为两组,它们具有不同的碳源利用方式。