Suppr超能文献

荧光假单胞菌IP01中异丙苯双加氧酶末端加氧酶组分的晶体结构

Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01.

作者信息

Dong Xuesong, Fushinobu Shinya, Fukuda Eriko, Terada Tohru, Nakamura Shugo, Shimizu Kentaro, Nojiri Hideaki, Omori Toshio, Shoun Hirofumi, Wakagi Takayoshi

机构信息

Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

出版信息

J Bacteriol. 2005 Apr;187(7):2483-90. doi: 10.1128/JB.187.7.2483-2490.2005.

Abstract

The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.

摘要

通过分子置换法,利用来自假单胞菌属菌株NCIB 9816 - 4的萘双加氧酶末端加氧酶组分(NphDO)的晶体结构,在2.2 Å的分辨率下测定了荧光假单胞菌IP01的异丙苯双加氧酶多组分酶系统末端组分(CumDO)的晶体结构。CumDO的两个催化中心(即非血红素铁中心和 Rieske [2Fe - 2S] 中心)的连接以及它们在相邻催化亚基中通过单个氨基酸残基Asp231形成的氢键桥接与NphDO相似。在活性位点的非血红素铁上结合了一个未鉴定的外部配体,可能是双加氧。CumDO活性位点的入口与NphDO活性位点的入口不同,因为形成盖子的两个环表现出很大的偏差。基于NphDO的复合物结构,在CumDO的底物结合口袋中模拟了联苯底物。围绕模拟联苯分子的残基包括一些通过对联苯双加氧酶的多项工程研究已表明对其底物特异性很重要的残基。

相似文献

1
Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01.
J Bacteriol. 2005 Apr;187(7):2483-90. doi: 10.1128/JB.187.7.2483-2490.2005.
4
Active-site loop variations adjust activity and selectivity of the cumene dioxygenase.
Nat Commun. 2021 Feb 17;12(1):1095. doi: 10.1038/s41467-021-21328-8.
6
Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase.
Structure. 1998 May 15;6(5):571-86. doi: 10.1016/s0969-2126(98)00059-8.
7
Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase.
J Mol Biol. 2005 Aug 12;351(2):355-70. doi: 10.1016/j.jmb.2005.05.059.
9
The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1.
FEBS J. 2007 May;274(10):2470-81. doi: 10.1111/j.1742-4658.2007.05783.x. Epub 2007 Apr 19.

引用本文的文献

1
Functional and spectroscopic approaches to determining thermal limitations of Rieske oxygenases.
Methods Enzymol. 2024;703:299-328. doi: 10.1016/bs.mie.2024.05.021. Epub 2024 Jun 29.
2
Custom tuning of Rieske oxygenase reactivity.
Nat Commun. 2023 Sep 20;14(1):5858. doi: 10.1038/s41467-023-41428-x.
3
Characterization of a novel monooxygenase originating from a deep-sea sediment metagenomic library.
Appl Microbiol Biotechnol. 2023 Oct;107(20):6237-6249. doi: 10.1007/s00253-023-12719-6. Epub 2023 Aug 15.
4
Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM.
Biochemistry. 2023 Jun 6;62(11):1807-1822. doi: 10.1021/acs.biochem.3c00150. Epub 2023 May 15.
6
Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase.
Biochemistry. 2023 Jan 17;62(2):507-523. doi: 10.1021/acs.biochem.2c00610. Epub 2022 Dec 30.
7
Engineering Rieske oxygenase activity one piece at a time.
Curr Opin Chem Biol. 2023 Feb;72:102227. doi: 10.1016/j.cbpa.2022.102227. Epub 2022 Nov 18.
9
Design principles for site-selective hydroxylation by a Rieske oxygenase.
Nat Commun. 2022 Jan 11;13(1):255. doi: 10.1038/s41467-021-27822-3.
10
Structural Insights into Dihydroxylation of Terephthalate, a Product of Polyethylene Terephthalate Degradation.
J Bacteriol. 2022 Mar 15;204(3):e0054321. doi: 10.1128/JB.00543-21. Epub 2022 Jan 10.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
4
Engineering a hybrid pseudomonad to acquire 3,4-dioxygenase activity for polychlorinated biphenyls.
J Biosci Bioeng. 1999;87(4):430-5. doi: 10.1016/s1389-1723(99)80090-5.
6
Use of non-crystallographic symmetry in protein structure refinement.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842-57. doi: 10.1107/S0907444995016477.
7
Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction.
J Bacteriol. 2003 Dec;185(23):6976-80. doi: 10.1128/JB.185.23.6976-6980.2003.
9
The role of active-site residues in naphthalene dioxygenase.
J Ind Microbiol Biotechnol. 2003 May;30(5):271-8. doi: 10.1007/s10295-003-0043-3. Epub 2003 Apr 15.
10
Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
Science. 2003 Feb 14;299(5609):1039-42. doi: 10.1126/science.1078020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验