Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Department of Microbiology, School of Science, RK Universitygrid.449487.2, Rajkot, Gujarat, India.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0083522. doi: 10.1128/aem.00835-22. Epub 2022 Jul 13.
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (αβ-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in αβ-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and αβ-type oxygenase components in ROs. We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like αβ quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α-type Oxy, although α-type Oxys correspond to the cap (α subunit part) of the mushroom-like αβ-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared αβ quaternary structures.
邻苯二甲酸二异丁酯双加氧酶(CumDO)是荧光假单胞菌 IP01 中邻苯二甲酸二甲酯降解途径的初始酶,是一种 Rieske 非血红素铁加氧酶(RO),由两个电子转移组成部分(还原酶 [CumDO-R] 和 Rieske 型铁氧还蛋白 [CumDO-F])和一个催化组成部分(αβ 型加氧酶 [CumDO-O])组成。催化作用是由 NAD(P)H 通过 CumDO-R 和 CumDO-F 向 CumDO-O 传递电子触发的。为了研究 CumDO-F 与 CumDO-O 之间的结合模式,并确定结合的关键 CumDO-O 氨基酸残基,我们模拟了 CumDO-O 晶体结构和预测的 CumDO-F 模型之间的对接,并确定了两个潜在的结合位点:一个位于蘑菇状 CumDO-O 的侧向位点,另一个位于蘑菇状 CumDO-O 的顶部位点。然后,我们对两个潜在结合位点的 16 个表面氨基酸残基进行了丙氨酸突变。使用纯化组件进行还原效率分析的结果表明,CumDO-F 结合在 CumDO-O 的侧向位点,α 亚基的 K117 和β 亚基的 R65 对于相互作用至关重要。此外,这两个带正电荷的残基在其电子供体为 Rieske 型铁氧还蛋白的 RO 中的 αβ 型加氧酶组件中高度保守。鉴于如果电子供体是不同类型的铁氧还蛋白或还原酶,这些残基就不会保守,因此蘑菇状结构的侧向位点被认为是 Rieske 型铁氧还蛋白和 RO 中 αβ 型加氧酶组件之间的共同结合位点。我们阐明了 Rieske 非血红素铁加氧酶(RO)的加氧酶(Oxy)与 Rieske 型铁氧还蛋白(Fd)结合的关键氨基酸残基。我们的结果表明,在许多 RO 中,Rieske 型 Fd 结合位点通常位于蘑菇状 αβ 四级结构的茎部(侧向位点)。尽管 α 型 Oxys 对应于蘑菇状 αβ 型 Oxys 的帽(α 亚基部分),但所得结合位点与报道的在 doughnut-like α 型 Oxy 的顶部位点完全不同。如果 Oxys 的电子供体是不同类型的 Fds 或还原酶,本研究中检测到的关键氨基酸残基就不会保守。总的来说,尽管 Oxy 分子具有共享的 αβ 四级结构,但我们可以假设,根据电子供体的性质,Oxys 和电子供体之间已经进化出独特的结合模式。