Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota55455, United States.
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, United States.
Biochemistry. 2023 Jan 17;62(2):507-523. doi: 10.1021/acs.biochem.2c00610. Epub 2022 Dec 30.
The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of O reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster. Past studies determined that substrates bind near the Fe(II), followed by O binding to the iron to initiate catalysis. Stopped-flow-single-turnover reactions (STOs) demonstrated that the Rieske cluster transfers an electron to the iron site during catalysis. It is shown here that fluorine ring substituents decrease the rate constant for Rieske electron transfer, implying a prior reaction of an Fe(III)-superoxo intermediate with a substrate. We propose that the iron becomes fully oxidized in the resulting Fe(III)-peroxo-substrate-radical intermediate, allowing Rieske electron transfer to occur. STO using 5-CD-salicylate- occurs with an inverse kinetic isotope effect (KIE). In contrast, STO of a 1:1 mixture of unlabeled and 5-CD-salicylate- yields a normal product isotope effect. It is proposed that aromatic and aryl-methyl hydroxylation reactions both begin with the Fe(III)-superoxo reaction with a ring carbon, yielding the inverse KIE due to sp → sp carbon hybridization. After Rieske electron transfer, the resulting Fe(III)-peroxo-salicylate intermediate can continue to aromatic hydroxylation, whereas the equivalent aryl-methyl intermediate formation must be reversible to allow the substrate exchange necessary to yield a normal product isotope effect. The resulting Fe(III)-(hydro)peroxo intermediate may be reactive or evolve through a high-valent iron intermediate to complete the aryl-methyl hydroxylation.
羟基化酶组分(S5HH)催化水杨酸的 C5 环羟化,但当 C5 位存在甲基取代基时,它会切换到甲基羟化。O 的使用表明,芳香族和芳基甲基羟基化都是单加氧酶化学的结果。S5HH 的功能单元由一个非血红素 Fe(II)位点组成,该位点位于亚基边界的 12 Å 处,与一个单电子还原的 Rieske 型铁硫簇相对。过去的研究确定,底物在靠近 Fe(II)的地方结合,然后 O 结合到铁上开始催化。停流单转换反应(STO)表明,Rieske 簇在催化过程中向铁位点转移电子。这里表明,氟环取代基降低了 Rieske 电子转移的速率常数,这意味着 Fe(III)-过氧中间物与底物的先前反应。我们提出,铁在形成的 Fe(III)-过氧-底物-自由基中间物中完全氧化,从而允许 Rieske 电子转移发生。使用 5-CD-水杨酸的 STO 发生逆动力学同位素效应(KIE)。相比之下,未标记和 5-CD-水杨酸的 1:1 混合物的 STO 产生正常的产物同位素效应。我们提出,芳香族和芳基甲基羟化反应都从 Fe(III)-过氧与环碳的反应开始,由于 sp → sp 碳杂化导致逆 KIE。在 Rieske 电子转移后,所得的 Fe(III)-过氧-水杨酸中间物可以继续进行芳香族羟化,而等效的芳基甲基中间物的形成必须是可逆的,以允许进行必要的底物交换,从而产生正常的产物同位素效应。所得的 Fe(III)-(氢)过氧中间物可能是反应性的,或者通过高价铁中间物进化以完成芳基甲基羟化。