Guffanti A A, Krulwich T A
Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029.
J Biol Chem. 1992 May 15;267(14):9580-8.
Oxidative phosphorylation by extremely alkaliphilic Bacillus species violates two major predictions of the chemiosmotic hypothesis: the magnitude of the chemiosmotic driving force, the delta p (electrochemical proton gradient), is too low to account for the phosphorylation potentials observed during growth at pH 10.5 without using a much higher H+/ATP stoichiometry than used during growth at pH 7.5, and artificially imposed diffusion potentials fail to energize ATP synthesis above about pH 9.5 (Guffanti, A. A., and Krulwich, T. A. (1989) Annu. Rev. Microbiol. 43, 435-463). To further examine the latter observation, large valinomycin-mediated potassium diffusion potentials were imposed across starved cells of Bacillus firmus OF4 at various pH values from pH 7.5 to 10.5. As the external pH increased above pH 8, there was a sharp decrease in the rate of ATP synthesis in response to an imposed diffusion potential. The rate of ATP synthesis fell to zero by pH 9.2 and 9.4, respectively, in the presence and absence of a small inwardly directed Na+ gradient. Electrogenic Na+/H+ antiport and Na+/alpha-aminoisobutyric acid symport proceeded at substantial rates throughout. When synthesis was energized by an electron donor, cells under comparable conditions synthesized ATP at rapid rates up to pH 10.5. The proton transfers that occur during respiration-dependent oxidative phosphorylation at pH 10.5 may depend upon specific complexes. Cells grown at pH 7.5, which have one-third the levels of the caa3-type terminal oxidase, and slightly lower levels of certain other respiratory chain complexes than pH 10.5-grown cells, support only low rates of ATP synthesis at pH 10.5, although energy-dependent symport and antiport rates are comparable with those in pH 10.5-grown cells. A model is presented for oxidative phosphorylation by the alkaliphilic Bacillus that involves a nonchemiosmotic direct intramembrane transfer of protons from specific respiratory chain complexes to the F0 sector of the ATPase, whereas remaining respiratory chain complexes extrude protons into the bulk to generate the bulk potential required both for ATP synthesis and other bioenergetic work. A pK-regulated gate or a delocalized proton pathway that fails to work above pH 9.5 are suggested as possible features that account for the loss of efficacy of a bulk-imposed diffusion potential in energizing ATP synthesis above pH 9.4.
化学渗透驱动力的大小,即Δp(电化学质子梯度)过低,无法解释在pH 10.5条件下生长时观察到的磷酸化电位,除非使用比在pH 7.5条件下生长时更高的H⁺/ATP化学计量比;并且人为施加的扩散电位在pH约9.5以上无法为ATP合成提供能量(古凡蒂,A. A.,和克鲁尔维奇,T. A.(1989年)《微生物学年评》43卷,435 - 463页)。为了进一步研究后一个观察结果,在pH值从7.5到10.5的不同条件下,对饥饿的坚强芽孢杆菌OF4细胞施加了由缬氨霉素介导的大的钾扩散电位。随着外部pH值升高到8以上,响应施加的扩散电位,ATP合成速率急剧下降。在存在和不存在小的内向Na⁺梯度的情况下,ATP合成速率分别在pH 9.2和9.4时降至零。生电Na⁺/H⁺反向转运和Na⁺/α - 氨基异丁酸同向转运在整个过程中都以相当的速率进行。当由电子供体提供能量进行合成时,在类似条件下的细胞在pH 10.5时仍能快速合成ATP。在pH 10.5时,呼吸依赖性氧化磷酸化过程中发生的质子转移可能依赖于特定的复合物。在pH 7.5条件下生长的细胞,其caa3型末端氧化酶水平仅为在pH 10.5条件下生长细胞的三分之一,并且某些其他呼吸链复合物的水平略低于在pH 10.5条件下生长的细胞,尽管能量依赖性同向转运和反向转运速率与在pH 10.5条件下生长的细胞相当,但在pH 10.5时仅支持低速率的ATP合成。本文提出了一个嗜碱芽孢杆菌氧化磷酸化的模型,该模型涉及质子从特定呼吸链复合物到ATP合酶F0部分的非化学渗透直接膜内转移,而其余呼吸链复合物将质子挤出到细胞外液中,以产生ATP合成和其他生物能量工作所需的细胞外液电位。有人提出,一个pK调节门或一个在pH 9.5以上不起作用的离域质子途径,可能是导致在pH 9.4以上施加的细胞外液扩散电位激发ATP合成的功效丧失的可能特征。