Suppr超能文献

钠能量学的过去与现在:愿钠动力与你同在。

The past and present of sodium energetics: may the sodium-motive force be with you.

作者信息

Mulkidjanian Armen Y, Dibrov Pavel, Galperin Michael Y

机构信息

School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany.

出版信息

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):985-92. doi: 10.1016/j.bbabio.2008.04.028. Epub 2008 Apr 27.

Abstract

All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.

摘要

所有活细胞都会定期排出钠离子,使细胞质中的钠离子浓度低于周围环境。在绝大多数细菌以及线粒体和叶绿体中,钠离子的排出是以质子动力为代价的。然而,一些细菌拥有钠离子跨膜电化学梯度(钠动力)的主要产生器。传统上,这些主要的钠离子泵被视为对高外部pH值或高温的适应。然而,随后的研究揭示了各种非嗜极端菌(如海洋细菌和某些细菌病原体)中主要的钠泵机制。此外,许多嗜碱菌和嗜热菌被证明依赖氢离子而非钠离子作为偶联离子。我们在此回顾了在理解钠动力作用方面的最新进展,包括:(i)关于钠动力作为能量中间体的进化首要性的结论;(ii)从钠离子切换到氢离子作为偶联离子的机制、进化优势和局限性;(iii)某些病原菌仍然依赖钠动力的可能原因。

相似文献

1
The past and present of sodium energetics: may the sodium-motive force be with you.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):985-92. doi: 10.1016/j.bbabio.2008.04.028. Epub 2008 Apr 27.
2
Evolutionary primacy of sodium bioenergetics.
Biol Direct. 2008 Apr 1;3:13. doi: 10.1186/1745-6150-3-13.
3
Animal plasma membrane energization by chemiosmotic H+ V-ATPases.
J Exp Biol. 1997 Jan;200(Pt 2):203-16. doi: 10.1242/jeb.200.2.203.
4
Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
Biochemistry (Mosc). 2020 Dec;85(12):1613-1630. doi: 10.1134/S0006297920120135.
5
Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
Adv Microb Physiol. 2004;49:175-218. doi: 10.1016/S0065-2911(04)49004-3.
6
The sodium cycle: a novel type of bacterial energetics.
J Bioenerg Biomembr. 1989 Dec;21(6):635-47. doi: 10.1007/BF00762683.
7
Bacterial sodium ion-coupled energetics.
Antonie Van Leeuwenhoek. 1994;65(4):381-95. doi: 10.1007/BF00872221.
8
Energy transduction in the methanogen Methanococcus voltae is based on a sodium current.
J Bacteriol. 1992 Sep;174(17):5575-83. doi: 10.1128/jb.174.17.5575-5583.1992.
9
Sodium as Coupling Cation in Respiratory Energy Conversion.
Met Ions Life Sci. 2016;16:349-90. doi: 10.1007/978-3-319-21756-7_11.

引用本文的文献

1
Divalent Cations (Ca, Mg, Mn, Fe, Ni, and Zn) Enhance Growth of and . by Reducing Generation Time.
ACS Omega. 2025 Aug 6;10(32):35827-35841. doi: 10.1021/acsomega.5c02786. eCollection 2025 Aug 19.
2
Non-redundant cardiolipin synthases shape membrane composition and support stress resilience in .
bioRxiv. 2025 May 19:2025.05.12.653583. doi: 10.1101/2025.05.12.653583.
3
Bioelectronic Drug-free Control of Opportunistic Pathogens through Selective Excitability.
Device. 2024 Nov 15;2(11). doi: 10.1016/j.device.2024.100596. Epub 2024 Oct 24.
5
Microbial ecology of serpentinite-hosted ecosystems.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf029.
7
A unicellular cyanobacterium relies on sodium energetics to fix N.
Nat Commun. 2024 Nov 9;15(1):9716. doi: 10.1038/s41467-024-53978-9.
8
Structural and mechanistic basis of the central energy-converting methyltransferase complex of methanogenesis.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2315568121. doi: 10.1073/pnas.2315568121. Epub 2024 Mar 26.
9
Bile acid fitness determinants of a isolate from a human pouchitis patient.
mBio. 2024 Jan 16;15(1):e0283023. doi: 10.1128/mbio.02830-23. Epub 2023 Dec 8.
10
On the potential roles of phosphorus in the early evolution of energy metabolism.
Front Microbiol. 2023 Aug 2;14:1239189. doi: 10.3389/fmicb.2023.1239189. eCollection 2023.

本文引用的文献

1
Evolutionary primacy of sodium bioenergetics.
Biol Direct. 2008 Apr 1;3:13. doi: 10.1186/1745-6150-3-13.
2
ATP synthesis by decarboxylation phosphorylation.
Results Probl Cell Differ. 2008;45:153-84. doi: 10.1007/400_2007_045.
3
Inventing the dynamo machine: the evolution of the F-type and V-type ATPases.
Nat Rev Microbiol. 2007 Nov;5(11):892-9. doi: 10.1038/nrmicro1767.
4
Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology.
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29. doi: 10.1038/nrm2272.
5
Two distinct proton binding sites in the ATP synthase family.
Biochemistry. 2007 Oct 23;46(42):11800-9. doi: 10.1021/bi701083v. Epub 2007 Oct 2.
6
A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus.
FEBS J. 2007 Aug;274(15):3928-38. doi: 10.1111/j.1742-4658.2007.05925.x. Epub 2007 Jul 5.
7
Na+-pyrophosphatase: a novel primary sodium pump.
Biochemistry. 2007 Jul 31;46(30):8872-8. doi: 10.1021/bi700564b. Epub 2007 Jul 3.
8
Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.
Photochem Photobiol Sci. 2007 Jan;6(1):19-34. doi: 10.1039/b517522d. Epub 2006 Dec 7.
10
Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase.
EMBO J. 2006 Nov 15;25(22):5433-42. doi: 10.1038/sj.emboj.7601410. Epub 2006 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验