Wang ZhenXiong, Hicks David B, Guffanti Arthur A, Baldwin Katisha, Krulwich Terry Ann
Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
J Biol Chem. 2004 Jun 18;279(25):26546-54. doi: 10.1074/jbc.M401206200. Epub 2004 Mar 15.
Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.
米切尔(Mitchell, P. (1961) Nature 191, 144 - 148)的能量偶联化学渗透模型假定,大量电化学质子梯度(Δp)是通过氧化磷酸化(OXPHOS)进行质子偶联ATP合成以及其他生物能量工作的唯一驱动力。嗜碱芽孢杆菌属的质子偶联OXPHOS的两个特性对这一原则提出了挑战:在pH 10.5时能强劲合成ATP,且这与Δp的大小无关;在高pH下,人工施加的电位无法替代呼吸产生的电位来驱动ATP合成(Krulwich, T. (1995) Mol. Microbiol. 15, 403 - 410)。在此我们表明,嗜碱假芽孢杆菌OF4的这些特性取决于ATP合酶a亚基和c亚基质子通道中嗜碱菌特有的特征。针对六个此类特征进行了定点改变,使其对应巨大芽孢杆菌中的序列,该序列反映了非嗜碱芽孢杆菌的共有序列。六个单突变体中有五个组装成了有活性的ATP酶/ATP合酶,其中四个突变体在高pH下的非发酵生长中表现出特定缺陷。这些突变体中的大多数失去了在低Δp时产生嗜碱菌特有的高磷酸化电位的能力。预计位于a亚基质子摄取通道中的aLys(180)和aGly(212)残基特别涉及通过ATP合酶在高pH下质子进出本体相的pH依赖性限制。证据包括在高pH下响应人工施加的电位时ATP合成大幅增强。这些发现表明,极端嗜碱菌的ATP合酶具有高pH下非发酵生长和OXPHOS所需的特殊特征。