Suppr超能文献

A finite element analysis of the push-out test: influence of test conditions.

作者信息

Dhert W J, Verheyen C C, Braak L H, de Wijn J R, Klein C P, de Groot K, Rozing P M

机构信息

Department of Biomaterials, School of Medicine, University of Leiden, The Netherlands.

出版信息

J Biomed Mater Res. 1992 Jan;26(1):119-30. doi: 10.1002/jbm.820260111.

Abstract

The commonly used method for quantitative evaluation of the strength of a bone-implant interface is the push-out test. In order to give an impulse to standardization and to gain more insight in the biomechanics of the push-out test, a finite element analysis of this test was performed. This study focused on the influence of test conditions on the push-out results. The influence of the following four parameters on the interface stress distribution was tested: (a) clearance of the hole in the support jig, (b) Young's modulus of the implant; (c) cortical thickness; and (d) implant diameter. The distance between the implant and the support jig turned out to be very critical for the occurrence of peak stresses in the interface. Variations of the Young's modulus of the implants resulted in a wide range of interface shear stresses. Variation of the cortical thickness showed a reciprocal relationship between cortical thickness and interface shear stress. However, the interface stress distribution remained uniform under the specific test circumstances. These findings also hold for variations in implant diameter. The present investigation shows that the clearance of the hole in the support jig, and the Young's modulus of the implant are parameters which most strongly influence the interface stress distribution. The clearance of the hole in the support jig is the most critical parameter, but also the parameter that can be controlled most easily. Lack of standardization with regard to these parameters can lead to uninterpretable test results. It is recommended that the clearance of the hole in the support jig is at least 0.7 mm and that push-out results are only compared with each other when materials with similar Young's modulus are concerned.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验