Foster Jeremy, Ganatra Mehul, Kamal Ibrahim, Ware Jennifer, Makarova Kira, Ivanova Natalia, Bhattacharyya Anamitra, Kapatral Vinayak, Kumar Sanjay, Posfai Janos, Vincze Tamas, Ingram Jessica, Moran Laurie, Lapidus Alla, Omelchenko Marina, Kyrpides Nikos, Ghedin Elodie, Wang Shiliang, Goltsman Eugene, Joukov Victor, Ostrovskaya Olga, Tsukerman Kiryl, Mazur Mikhail, Comb Donald, Koonin Eugene, Slatko Barton
Molecular Parasitology Division, New England Biolabs, Beverly, Massachusetts, USA.
PLoS Biol. 2005 Apr;3(4):e121. doi: 10.1371/journal.pbio.0030121. Epub 2005 Mar 29.
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.
本文展示了马来布鲁线虫(Brugia malayi)体内专性α-变形菌内共生菌沃尔巴克氏体(Wolbachia)的完整基因组DNA序列及分析结果。马来布鲁线虫是一种人类丝虫寄生线虫,沃尔巴克氏体对其生育能力和生存至关重要。虽然从数量上看,该基因组比密切相关的立克次氏体物种的基因组降解程度更高,但沃尔巴克氏体保留了更多完整的代谢途径。提供核黄素、黄素腺嘌呤二核苷酸、血红素和核苷酸的能力可能是沃尔巴克氏体对这种共生关系的主要贡献,而宿主线虫可能为沃尔巴克氏体的生长提供所需的氨基酸。对马来布鲁线虫的沃尔巴克氏体内共生菌(wBm)与黑腹果蝇的沃尔巴克氏体内共生菌(wMel)进行基因组比较表明,尽管它们的基因组显示出高度的基因组重排,但它们具有相似的代谢趋势。与wMel不同,wBm不含前噬菌体,重复DNA水平降低。两种沃尔巴克氏体都失去了大量膜生物合成基因,这显然使它们无法合成脂多糖A(脂多糖A是变形菌细胞膜的常见成分)。然而,它们肽聚糖结构的差异可能反映了wBm的共生生活方式与wMel的寄生生活方式的不同。相对于wMel,wBm较小的基因组大小可能反映了感染宿主细胞和逃避宿主防御系统所需基因的丢失。对来自丝虫线虫的首个测序内共生菌基因组的分析,为内共生菌的进化提供了见解,此外还为消除人类皮肤和淋巴丝虫病提供了新的潜在靶点。