Liang Z X, Zhang Z D, Liu W M
Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, People's Republic of China.
Phys Rev Lett. 2005 Feb 11;94(5):050402. doi: 10.1103/PhysRevLett.94.050402. Epub 2005 Feb 9.
We present a family of exact solutions of the one-dimensional nonlinear Schro dinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background.
我们给出了一维非线性薛定谔方程的一族精确解,该方程描述了在具有排斥抛物势且原子间相互作用随时间变化的玻色 - 爱因斯坦凝聚体中亮孤子的动力学。我们的结果表明,在参数的安全范围内,通过增加原子散射长度的绝对值,亮孤子可以被压缩到非常高的局部物质密度,这可为研究一维格罗斯 - 皮塔耶夫斯基方程的有效性范围提供一种实验工具。我们还发现亮孤子中的原子数保持动态稳定:在亮孤子和背景之间形成了一个时间周期性的原子交换。