Stepanova Anna N, Alonso Jose M
Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
Sci STKE. 2005 Mar 22;2005(276):cm4. doi: 10.1126/stke.2762005cm4.
In plants, ethylene gas functions as a potent endogenous growth regulator. In the model system Arabidopsis thaliana, the molecular mechanisms that underlie perception and transduction of the ethylene signal to the nucleus, where the transcription of hundreds of genes is altered, are being elucidated. In the current view, ethylene is sensed by a family of five receptors that show similarity to the bacterial two-component histidine kinases, and in plants function as negative regulators of the pathway. Binding of the ethylene gas turns off the receptors, resulting in the inactivation of another negative regulator of ethylene signaling, CTR1, a Raf-like protein kinase that directly interacts with the receptors. EIN2, a protein of unknown biochemical activity that functions as a positive regulator of the pathway, acts downstream of CTR. Derepression of EIN2 by ethylene upon disabling of the receptors and CTR1 leads to the activation of EIN3 and EIN3-like transcription factors. In the absence of ethylene, the levels of EIN3 protein are extremely low because of the function of two F-box-containing proteins, EBF1 and EBF2, that target EIN3 for proteosome-mediated degradation. In the presence of ethylene, the EIN3 protein accumulates in the nucleus and initiates a transcriptional cascade, resulting in the activation and repression of hundreds of genes. To date, the only empirically demonstrated direct target of EIN3 is the APETALA2 (AP2)-domain-containing transcription factor gene ERF1. The coregulation of ERF1 by another plant hormone, jasmonic acid, illustrates how a transcriptional cascade could be utilized in a combinatorial fashion to generate a large diversity of responses using a limited number of input signals. As new components and points of intersection with other pathways are identified, the Connections Map will be updated.
在植物中,乙烯气体作为一种强效的内源性生长调节剂发挥作用。在模式植物拟南芥中,乙烯信号被感知并传递至细胞核,导致数百个基因转录发生改变,其背后的分子机制正逐步被阐明。当前观点认为,乙烯由一个包含五个受体的家族所感知,这些受体与细菌双组分组氨酸激酶具有相似性,在植物中作为该信号通路的负调控因子发挥作用。乙烯气体的结合会使受体失活,导致乙烯信号传导的另一个负调控因子CTR1失活,CTR1是一种类Raf蛋白激酶,可直接与受体相互作用。EIN2是一种生化活性未知的蛋白,作为该信号通路的正调控因子,作用于CTR的下游。受体和CTR1失活后,乙烯对EIN2的去抑制作用会导致EIN3和EIN3样转录因子的激活。在没有乙烯的情况下,由于两种含F-box蛋白EBF1和EBF2的作用,EIN3蛋白水平极低,这两种蛋白会将EIN3靶向蛋白酶体介导的降解。在有乙烯存在的情况下,EIN3蛋白在细胞核中积累并启动转录级联反应,导致数百个基因的激活和抑制。迄今为止,唯一经实验证实的EIN3直接靶标是含APETALA2(AP2)结构域的转录因子基因ERF1。另一种植物激素茉莉酸对ERF1的共同调控,说明了转录级联反应如何以组合方式被利用,通过有限数量的输入信号产生大量不同的反应。随着新的组分以及与其他信号通路交叉点的确定,连接图谱将不断更新。