Suppr超能文献

使用肿块模板进行乳腺钼靶肿块检测。

Mammographic mass detection using a mass template.

作者信息

Ozekes Serhat, Osman Onur, Camurcu A Yilmaz

机构信息

Istanbul Commerce University, RagIp Gumuspala Cad. No: 84 Eminonu 34378 Istanbul, Turkey.

出版信息

Korean J Radiol. 2005 Oct-Dec;6(4):221-8. doi: 10.3348/kjr.2005.6.4.221.

Abstract

OBJECTIVE

The purpose of this study was to develop a new method for automated mass detection in digital mammographic images using templates.

MATERIALS AND METHODS

Masses were detected using a two steps process. First, the pixels in the mammogram images were scanned in 8 directions, and regions of interest (ROI) were identified using various thresholds. Then, a mass template was used to categorize the ROI as true masses or non-masses based on their morphologies. Each pixel of a ROI was scanned with a mass template to determine whether there was a shape (part of a ROI) similar to the mass in the template. The similarity was controlled using two thresholds. If a shape was detected, then the coordinates of the shape were recorded as part of a true mass. To test the system's efficiency, we applied this process to 52 mammogram images from the Mammographic Image Analysis Society (MIAS) database.

RESULTS

Three hundred and thirty-two ROI were identified using the ROI specification methods. These ROI were classified using three templates whose diameters were 10, 20 and 30 pixels. The results of this experiment showed that using the templates with these diameters achieved sensitivities of 93%, 90% and 81% with 1.3, 0.7 and 0.33 false positives per image respectively.

CONCLUSION

These results indicate that the detection performance of this template based algorithm is satisfactory, and may improve the performance of computer-aided analysis of mammographic images and early diagnosis of mammographic masses.

摘要

目的

本研究的目的是开发一种使用模板在数字化乳腺X线图像中进行自动肿块检测的新方法。

材料与方法

采用两步法检测肿块。首先,在8个方向上扫描乳腺X线图像中的像素,并使用各种阈值识别感兴趣区域(ROI)。然后,使用肿块模板根据其形态将ROI分类为真正的肿块或非肿块。用肿块模板扫描ROI的每个像素,以确定是否存在与模板中的肿块相似的形状(ROI的一部分)。使用两个阈值控制相似度。如果检测到一个形状,则将该形状的坐标记录为真正肿块的一部分。为了测试该系统的效率,我们将此过程应用于来自乳腺X线图像分析协会(MIAS)数据库的52幅乳腺X线图像。

结果

使用ROI指定方法识别出332个ROI。使用直径为10、20和30像素的三个模板对这些ROI进行分类。该实验结果表明,使用这些直径的模板分别实现了93%、90%和81%的灵敏度,每幅图像的假阳性分别为1.3、0.7和0.33。

结论

这些结果表明,这种基于模板的算法的检测性能令人满意,可能会提高乳腺X线图像的计算机辅助分析性能和乳腺肿块的早期诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba1c/2684968/b68d9326cca4/kjr-6-221-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验