Suppr超能文献

从定性和(半)定量微生物污染数据中估计分布,用于风险评估。

Estimating distributions out of qualitative and (semi)quantitative microbiological contamination data for use in risk assessment.

机构信息

Division of Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium.

出版信息

Int J Food Microbiol. 2010 Apr 15;138(3):260-9. doi: 10.1016/j.ijfoodmicro.2010.01.025. Epub 2010 Jan 25.

Abstract

A framework using maximum likelihood estimation (MLE) is used to fit a probability distribution to a set of qualitative (e.g., absence in 25 g), semi-quantitative (e.g., presence in 25 g and absence in 1g) and/or quantitative test results (e.g., 10 CFU/g). Uncertainty about the parameters of the variability distribution is characterized through a non-parametric bootstrapping method. The resulting distribution function can be used as an input for a second order Monte Carlo simulation in quantitative risk assessment. As an illustration, the method is applied to two sets of in silico generated data. It is demonstrated that correct interpretation of data results in an accurate representation of the contamination level distribution. Subsequently, two case studies are analyzed, namely (i) quantitative analyses of Campylobacter spp. in food samples with nondetects, and (ii) combined quantitative, qualitative, semiquantitative analyses and nondetects of Listeria monocytogenes in smoked fish samples. The first of these case studies is also used to illustrate what the influence is of the limit of quantification, measurement error, and the number of samples included in the data set. Application of these techniques offers a way for meta-analysis of the many relevant yet diverse data sets that are available in literature and (inter)national reports of surveillance or baseline surveys, therefore increases the information input of a risk assessment and, by consequence, the correctness of the outcome of the risk assessment.

摘要

采用最大似然估计 (MLE) 的框架来拟合概率分布,以适应一组定性(例如,25 克中不存在)、半定量(例如,25 克中存在,1 克中不存在)和/或定量测试结果(例如,10 CFU/g)。通过非参数自举方法来描述关于变异性分布参数的不确定性。所得分布函数可作为定量风险评估中二阶蒙特卡罗模拟的输入。作为说明,该方法应用于两组计算机生成的数据。结果表明,正确解释数据可以准确表示污染水平分布。随后分析了两个案例研究,即 (i) 食品样本中弯曲杆菌属 spp.的定量分析,以及 (ii) 烟熏鱼样本中李斯特菌属 monocytogenes 的定量、定性、半定量分析以及无检测结果的综合分析。第一个案例研究还说明了定量限、测量误差以及数据集中包含的样本数量对结果的影响。这些技术的应用为对文献和(国际)监测或基线调查报告中可用的许多相关但不同的数据进行荟萃分析提供了一种方法,因此增加了风险评估的信息输入,从而提高了风险评估结果的正确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验