Suppr超能文献

作为N-甲基-D-天冬氨酸受体拮抗剂的N1-取代哌嗪-2,3-二羧酸衍生物的合成与药理学

Synthesis and pharmacology of N1-substituted piperazine-2,3-dicarboxylic acid derivatives acting as NMDA receptor antagonists.

作者信息

Morley Richard M, Tse Heong-Wai, Feng Bihua, Miller Jacqueline C, Monaghan Daniel T, Jane David E

机构信息

Department of Pharmacology, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.

出版信息

J Med Chem. 2005 Apr 7;48(7):2627-37. doi: 10.1021/jm0492498.

Abstract

The binding site for competitive NMDA receptor antagonists is on the NR2 subunit, of which there are four types (NR2A-D). Typical antagonists such as (R)-AP5 have a subunit selectivity of NR2A > NR2B > NR2C > NR2D. The competitive NMDA receptor antagonist (2R,3S)-(1-biphenylyl-4-carbonyl)piperazine-2,3-dicarboxylic acid (PBPD, 16b) displays an unusual selectivity with improved relative affinity for NR2C and NR2D vs NR2A and NR2B. Analogues of 16b bearing aroyl or aryl substituents attached to the N(1) position of piperazine-2,3-dicarboxylic acid have been synthesized to probe the structural requirements for NR2C/NR2D selectivity. A phenanthrenyl-2-carbonyl analogue, 16e, had >60-fold higher affinity for NR2C and NR2D and showed 3-5-fold selectivity for NR2C/NR2D vs NR2A/NR2B. The phenanthrenyl-3-carbonyl analogue (16f) was less potent but more selective, having 5- and 7-fold selectivity for NR2D vs NR2A and NR2B, respectively. Thus, antagonists bearing bulky hydrophobic residues have a different NR2 subunit selectivity than that of typical antagonists.

摘要

竞争性N-甲基-D-天冬氨酸(NMDA)受体拮抗剂的结合位点位于NR2亚基上,该亚基有四种类型(NR2A-D)。典型的拮抗剂,如(R)-AP5,对亚基的选择性为NR2A > NR2B > NR2C > NR2D。竞争性NMDA受体拮抗剂(2R,3S)-(1-联苯基-4-羰基)哌嗪-2,3-二羧酸(PBPD,16b)表现出不同寻常的选择性,相对于NR2A和NR2B,它对NR2C和NR2D的相对亲和力有所提高。已合成了在哌嗪-2,3-二羧酸的N(1)位带有芳酰基或芳基取代基的16b类似物,以探究NR2C/NR2D选择性的结构要求。一种菲基-2-羰基类似物16e对NR2C和NR2D的亲和力高出60倍以上,并且相对于NR2A/NR2B,对NR2C/NR2D表现出3至5倍的选择性。菲基-3-羰基类似物(16f)活性较低,但选择性更高,相对于NR2A和NR2B,对NR2D的选择性分别为5倍和7倍。因此,带有大体积疏水残基的拮抗剂与典型拮抗剂具有不同的NR2亚基选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验