Suppr超能文献

中枢神经系统中的N-甲基-D-天冬氨酸受体

NMDA Receptors in the Central Nervous System.

作者信息

Hansen Kasper B, Yi Feng, Perszyk Riley E, Menniti Frank S, Traynelis Stephen F

机构信息

Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.

Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA.

出版信息

Methods Mol Biol. 2017;1677:1-80. doi: 10.1007/978-1-4939-7321-7_1.

Abstract

NMDA-type glutamate receptors are ligand-gated ion channels that mediate a major component of excitatory neurotransmission in the central nervous system (CNS). They are widely distributed at all stages of development and are critically involved in normal brain functions, including neuronal development and synaptic plasticity. NMDA receptors are also implicated in the pathophysiology of numerous neurological and psychiatric disorders, such as ischemic stroke, traumatic brain injury, Alzheimer's disease, epilepsy, mood disorders, and schizophrenia. For these reasons, NMDA receptors have been intensively studied in the past several decades to elucidate their physiological roles and to advance them as therapeutic targets. Seven NMDA receptor subunits exist that assemble into a diverse array of tetrameric receptor complexes, which are differently regulated, have distinct regional and developmental expression, and possess a wide range of functional and pharmacological properties. The diversity in subunit composition creates NMDA receptor subtypes with distinct physiological roles across neuronal cell types and brain regions, and enables precise tuning of synaptic transmission. Here, we will review the relationship between NMDA receptor structure and function, the diversity and significance of NMDA receptor subtypes in the CNS, as well as principles and rules by which NMDA receptors operate in the CNS under normal and pathological conditions.

摘要

N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体是配体门控离子通道,介导中枢神经系统(CNS)兴奋性神经传递的主要成分。它们在发育的各个阶段广泛分布,并在正常脑功能中起关键作用,包括神经元发育和突触可塑性。NMDA受体还与多种神经和精神疾病的病理生理学有关,如缺血性中风、创伤性脑损伤、阿尔茨海默病、癫痫、情绪障碍和精神分裂症。由于这些原因,在过去几十年中,人们对NMDA受体进行了深入研究,以阐明其生理作用,并将其作为治疗靶点进行推进。存在七种NMDA受体亚基,它们组装成各种不同的四聚体受体复合物,这些复合物受到不同的调节,具有不同的区域和发育表达,并具有广泛的功能和药理学特性。亚基组成的多样性产生了在神经元细胞类型和脑区具有不同生理作用的NMDA受体亚型,并能够精确调节突触传递。在这里,我们将综述NMDA受体结构与功能之间的关系、NMDA受体亚型在中枢神经系统中的多样性和意义,以及NMDA受体在正常和病理条件下在中枢神经系统中发挥作用的原理和规则。

相似文献

1
NMDA Receptors in the Central Nervous System.
Methods Mol Biol. 2017;1677:1-80. doi: 10.1007/978-1-4939-7321-7_1.
2
Structure, function, and allosteric modulation of NMDA receptors.
J Gen Physiol. 2018 Aug 6;150(8):1081-1105. doi: 10.1085/jgp.201812032. Epub 2018 Jul 23.
4
Molecular diversity of glutamate receptors and their physiological functions.
EXS. 1994;71:71-80. doi: 10.1007/978-3-0348-7330-7_8.
5
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity.
Int J Mol Sci. 2020 Feb 24;21(4):1538. doi: 10.3390/ijms21041538.
7
Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
Methods Mol Biol. 2017;1677:145-162. doi: 10.1007/978-1-4939-7321-7_7.
8
9
[Role of excitatory amino acids in neuropathology].
Medicina (B Aires). 1995;55(4):355-65.
10
Controlling NMDA receptor subunit composition using ectopic retention signals.
J Neurosci. 2014 Dec 10;34(50):16630-6. doi: 10.1523/JNEUROSCI.2736-14.2014.

引用本文的文献

1
Trans-synaptic molecular context of NMDA receptor nanodomains.
Nat Commun. 2025 Aug 12;16(1):7460. doi: 10.1038/s41467-025-62766-y.
2
Striatal GluN2A gene suppression reduces L-DOPA-induced abnormal involuntary movements in parkinsonian rats.
Neuropharmacology. 2025 Jul 29;279:110616. doi: 10.1016/j.neuropharm.2025.110616.
4
Opiorphin and neuropathic pain: a promising treatment approach?
Inflammopharmacology. 2025 Jul 3. doi: 10.1007/s10787-025-01827-6.
5
Advances in the Structural Basis of GluN2A-Selective Negative Allosteric Modulators.
ACS Med Chem Lett. 2025 May 9;16(6):911-915. doi: 10.1021/acsmedchemlett.5c00226. eCollection 2025 Jun 12.
7
Mechanisms of autoimmune-mediated paraneoplastic syndromes: immune tolerance and disease pathogenesis.
Front Immunol. 2025 May 9;16:1608934. doi: 10.3389/fimmu.2025.1608934. eCollection 2025.
8
Glutamate-Based Therapeutic Strategies for Schizophrenia: Emerging Approaches Beyond Dopamine.
Int J Mol Sci. 2025 May 2;26(9):4331. doi: 10.3390/ijms26094331.
9
Skin Lesions as Signs of Neuroenhancement in Sport.
Brain Sci. 2025 Mar 17;15(3):315. doi: 10.3390/brainsci15030315.

本文引用的文献

2
Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors.
Neuron. 2016 Sep 21;91(6):1316-1329. doi: 10.1016/j.neuron.2016.08.014. Epub 2016 Sep 8.
3
The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging.
Front Synaptic Neurosci. 2016 Jul 28;8:20. doi: 10.3389/fnsyn.2016.00020. eCollection 2016.
4
Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences.
Neuropharmacology. 2017 Jan;112(Pt A):34-45. doi: 10.1016/j.neuropharm.2016.07.037. Epub 2016 Jul 30.
5
Structural basis for integration of GluD receptors within synaptic organizer complexes.
Science. 2016 Jul 15;353(6296):295-9. doi: 10.1126/science.aae0104.
6
Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.
F1000Res. 2016 May 26;5. doi: 10.12688/f1000research.8366.1. eCollection 2016.
7
Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations.
Neuropharmacology. 2016 Oct;109:196-204. doi: 10.1016/j.neuropharm.2016.06.008. Epub 2016 Jun 7.
8
mGlu1 receptor canonical signaling pathway contributes to the opening of the orphan GluD2 receptor.
Neuropharmacology. 2017 Mar 15;115:92-99. doi: 10.1016/j.neuropharm.2016.06.001. Epub 2016 Jun 6.
9
Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor.
J Biol Chem. 2016 Jul 29;291(31):16175-85. doi: 10.1074/jbc.M116.721274. Epub 2016 May 21.
10
Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3280-9. doi: 10.1073/pnas.1522180113. Epub 2016 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验