Suppr超能文献

利用出院小结的自然语言处理自动检测不良事件。

Automated detection of adverse events using natural language processing of discharge summaries.

作者信息

Melton Genevieve B, Hripcsak George

机构信息

Department of Biomedical Informatics, Columbia University, 622 West 168th Street, Vanderbilt Clinic, 5th Floor, New York, NY 10032, USA.

出版信息

J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57. doi: 10.1197/jamia.M1794. Epub 2005 Mar 31.

Abstract

OBJECTIVE

To determine whether natural language processing (NLP) can effectively detect adverse events defined in the New York Patient Occurrence Reporting and Tracking System (NYPORTS) using discharge summaries.

DESIGN

An adverse event detection system for discharge summaries using the NLP system MedLEE was constructed to identify 45 NYPORTS event types. The system was first applied to a random sample of 1,000 manually reviewed charts. The system then processed all inpatient cases with electronic discharge summaries for two years. All system-identified events were reviewed, and performance was compared with traditional reporting.

MEASUREMENTS

System sensitivity, specificity, and predictive value, with manual review serving as the gold standard.

RESULTS

The system correctly identified 16 of 65 events in 1,000 charts. Of 57,452 total electronic discharge summaries, the system identified 1,590 events in 1,461 cases, and manual review verified 704 events in 652 cases, resulting in an overall sensitivity of 0.28 (95% confidence interval [CI]: 0.17-0.42), specificity of 0.985 (CI: 0.984-0.986), and positive predictive value of 0.45 (CI: 0.42-0.47) for detecting cases with events and an average specificity of 0.9996 (CI: 0.9996-0.9997) per event type. Traditional event reporting detected 322 events during the period (sensitivity 0.09), of which the system identified 110 as well as 594 additional events missed by traditional methods.

CONCLUSION

NLP is an effective technique for detecting a broad range of adverse events in text documents and outperformed traditional and previous automated adverse event detection methods.

摘要

目的

确定自然语言处理(NLP)能否利用出院小结有效地检测纽约患者事件报告与跟踪系统(NYPORTS)中定义的不良事件。

设计

构建了一个使用NLP系统MedLEE的出院小结不良事件检测系统,以识别45种NYPORTS事件类型。该系统首先应用于1000份人工审核病历的随机样本。然后,该系统对两年内所有带有电子出院小结的住院病例进行处理。对系统识别出的所有事件进行审核,并将性能与传统报告进行比较。

测量指标

以人工审核作为金标准,系统的灵敏度、特异度和预测值。

结果

在1000份病历中,该系统正确识别出65个事件中的16个。在总共57452份电子出院小结中,该系统在1461例病例中识别出1590个事件,人工审核在652例病例中核实了704个事件,检测有事件病例的总体灵敏度为0.28(95%置信区间[CI]:0.17 - 0.42),特异度为0.985(CI:0.984 - 0.986),阳性预测值为0.45(CI:0.42 - 0.47),每种事件类型的平均特异度为0.9996(CI:0.9996 - 0.9997)。在此期间,传统事件报告检测到322个事件(灵敏度0.09),其中该系统识别出110个事件,以及传统方法遗漏的594个额外事件。

结论

NLP是一种用于检测文档中广泛不良事件的有效技术,其性能优于传统及以往的自动不良事件检测方法。

相似文献

2
Electronically screening discharge summaries for adverse medical events.对出院小结进行电子筛查以查找不良医疗事件。
J Am Med Inform Assoc. 2003 Jul-Aug;10(4):339-50. doi: 10.1197/jamia.M1201. Epub 2003 Mar 28.

引用本文的文献

5
The Impact of Artificial Intelligence on Allergy Diagnosis and Treatment.人工智能对过敏诊断和治疗的影响。
Curr Allergy Asthma Rep. 2024 Jul;24(7):361-372. doi: 10.1007/s11882-024-01152-y. Epub 2024 Jul 2.
6
Clinical Applications of Machine Learning.机器学习的临床应用
Ann Surg Open. 2024 Apr 18;5(2):e423. doi: 10.1097/AS9.0000000000000423. eCollection 2024 Jun.

本文引用的文献

9
The epidemiology of medical errors: a review of the literature.医疗差错的流行病学:文献综述
Wien Klin Wochenschr. 2003 May 30;115(10):318-25. doi: 10.1007/BF03041483.
10
Electronically screening discharge summaries for adverse medical events.对出院小结进行电子筛查以查找不良医疗事件。
J Am Med Inform Assoc. 2003 Jul-Aug;10(4):339-50. doi: 10.1197/jamia.M1201. Epub 2003 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验