Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer M S, Bernays E A
Institut für Pharmazeutische Biologie der Technischen Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany.
Insect Biochem Mol Biol. 2005 May;35(5):391-411. doi: 10.1016/j.ibmb.2004.12.010.
Evidence is presented that the polyphagous arctiid Estigmene acrea is well adapted to sequester and specifically handle pyrrolizidine alkaloids of almost all known structural types representative of the major plant families with pyrrolizidine alkaloid-containing species, i.e. Asteraceae with the tribes Senecioneae and Eupatorieae, Boraginaceae, Fabaceae, Apocynaceae and Orchidaceae. The adaptation of E. acrea to pyrrolizidine alkaloids includes a number of specialized characters: (i) highly sensitive recognition of alkaloid sources by pyrrolizidine alkaloid-specific taste receptors; (ii) detoxification of pyrrolizidine alkaloids by N-oxidation catalyzed by a specific flavin-dependent monooxygenase; (iii) transfer and maintenance of all types of pyrrolizidine N-oxides through all developmental stages; (iv) conversion of the various structures into the male courtship pheromone hydroxydanaidal most probably through retronecine and insect specific retronecine esters (creatonotines) as common intermediates; (v) specific integration into mating behavior and defense strategies. Toxic otonecine derivatives, e.g. the senecionine analogue senkirkine, which often accompany the common retronecine derivatives and which cannot be detoxified by N-oxidation do not affect the development of E. acrea larvae. Senkirkine is not sequestered at all. Non-toxic 1,2-saturated platynecine derivatives that frequently occur together with toxic retronecine esters are sequestered and metabolized to hydroxydanaidal, indicating the ability of E. acrea to aromatize saturated pyrrolizidines. Although pyrrolizidine alkaloids, even if they are offered continuously at a high level (2%) in the larval diet, are non-toxic, E. acrea larvae are not able to develop exclusively on a pyrrolizidine alkaloid-containing plant like Crotalaria. Therefore, E. acrea appears to be specifically adapted to exploit pyrrolizidine alkaloid-containing plants as "drug source" but not as a food source.
有证据表明,多食性灯蛾科昆虫黄猩猩灯蛾能够很好地适应隔离并专门处理几乎所有已知结构类型的吡咯里西啶生物碱,这些生物碱代表了含吡咯里西啶生物碱物种的主要植物科,即菊科中的千里光族和泽兰族、紫草科、豆科、夹竹桃科和兰科。黄猩猩灯蛾对吡咯里西啶生物碱的适应包括许多特殊特征:(i)通过吡咯里西啶生物碱特异性味觉受体对生物碱来源高度敏感的识别;(ii)由特定的黄素依赖性单加氧酶催化的N-氧化作用对吡咯里西啶生物碱进行解毒;(iii)在所有发育阶段转移和维持所有类型的吡咯里西啶N-氧化物;(iv)各种结构最有可能通过倒千里光碱和昆虫特异性倒千里光碱酯(creatonotines)作为常见中间体转化为雄性求偶信息素羟基丹奈德;(v)特异性融入交配行为和防御策略。有毒的奥托千里光碱衍生物,例如与常见的倒千里光碱衍生物经常相伴且不能通过N-氧化作用解毒的千里光宁碱类似物,不会影响黄猩猩灯蛾幼虫的发育。千里光宁碱根本不会被隔离。经常与有毒的倒千里光碱酯一起出现的无毒1,2-饱和阔叶千里光碱衍生物会被隔离并代谢为羟基丹奈德,这表明黄猩猩灯蛾具有将饱和吡咯里西啶芳构化的能力。尽管吡咯里西啶生物碱即使在幼虫饲料中以高水平(2%)持续提供也是无毒的,但黄猩猩灯蛾幼虫不能仅以含吡咯里西啶生物碱的植物如猪屎豆为食而发育。因此,黄猩猩灯蛾似乎特别适应将含吡咯里西啶生物碱的植物作为“药物来源”而非食物来源加以利用。