Suppr超能文献

酿酒酵母中Ure2对重金属离子和细胞氧化损伤的体内保护特异性。

In vivo specificity of Ure2 protection from heavy metal ion and oxidative cellular damage in Saccharomyces cerevisiae.

作者信息

Rai Rajendra, Cooper Terrance G

机构信息

Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA.

出版信息

Yeast. 2005 Apr 15;22(5):343-58. doi: 10.1002/yea.1215.

Abstract

The S. cerevisiae Ure2 protein is a prion precursor able to form large homopolymers with the characteristics of amyloid particles, a function largely restricted to its 90 N-terminal amino acids. The remaining C-terminal domain of Ure2 plays two important roles in cellular metabolism. First, it regulates nitrogen catabolic gene expression by forming a complex with the GATA transcription factor Gln3. This complex formation correlates with Gln3 being sequestered in the cytoplasm under conditions of excess nitrogen, where Gln3/Gat1-mediated transcription is minimal. Second, Ure2, which possesses structural homology with glutathione S-transferases and binds to xenobiotics and glutathione, has been recently shown to be required for Cd(II) and hydrogen peroxide detoxification. Present experiments demonstrate that Ure2 possesses a far broader protection specificity, being required to avoid the toxic effects of As(III), As(V), Cr(III), Cr(VI), Se(IV), as well as Cd(II) and Ni(II), and to varying lesser degrees Co(II), Cu(II), Fe(II), Ag(I), Hg(II), cumene and t-butyl hydroperoxides. In contrast, deletion of URE2 greatly enhances a cell's ability to withstand toxic concentrations of Zn(II) and Mo(VI). In the case of Cd(II), Ure2 does not function to decrease intracellular Cd(II) levels or influence glutathione availability for glutathionation. In fact, ure2 hypersensitivity to Cd(II) remains the same, even when glutathione is used as sole source of nitrogen for cell growth. These data suggest that Ure2 possesses a central role in metal ion detoxification, a role not demonstrably shared by either of the two known S. cerevisiae glutathione S-transferases, Gtt1 and Gtt2, or the two glutaredoxins, Grx1 and Grx2, that also possess glutathione S-transferase activity.

摘要

酿酒酵母Ure2蛋白是一种朊病毒前体,能够形成具有淀粉样颗粒特征的大型同聚物,该功能主要局限于其90个N端氨基酸。Ure2其余的C端结构域在细胞代谢中发挥两个重要作用。首先,它通过与GATA转录因子Gln3形成复合物来调节氮分解代谢基因的表达。这种复合物的形成与Gln3在氮过量条件下被隔离在细胞质中相关,此时Gln3/Gat1介导的转录作用最小。其次,Ure2与谷胱甘肽S-转移酶具有结构同源性,能与异生素和谷胱甘肽结合,最近已证明它是镉(II)和过氧化氢解毒所必需的。目前的实验表明,Ure2具有更广泛的保护特异性,它对于避免砷(III)、砷(V)、铬(III)、铬(VI)、硒(IV)以及镉(II)和镍(II)的毒性作用是必需的,对钴(II)、铜(II)、铁(II)、银(I)、汞(II)、异丙苯和叔丁基过氧化氢的毒性作用在不同程度上也有一定需求。相比之下,URE2基因的缺失极大地增强了细胞耐受锌(II)和钼(VI)毒性浓度的能力。就镉(II)而言,Ure2并不起到降低细胞内镉(II)水平或影响用于谷胱甘肽化的谷胱甘肽可用性的作用。事实上,即使将谷胱甘肽用作细胞生长的唯一氮源,ure2对镉(II)的超敏感性仍然相同。这些数据表明,Ure2在金属离子解毒中具有核心作用,这一作用在酿酒酵母中已知的两种谷胱甘肽S-转移酶Gtt1和Gtt2,以及同样具有谷胱甘肽S-转移酶活性的两种谷氧还蛋白Grx1和Grx2中都未明显体现。

相似文献

3
Role of yeast glutaredoxins as glutathione S-transferases.
J Biol Chem. 2003 Jun 20;278(25):22492-7. doi: 10.1074/jbc.M301387200. Epub 2003 Apr 8.
4
Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic.
Arch Microbiol. 2010 Nov;192(11):909-18. doi: 10.1007/s00203-010-0614-4. Epub 2010 Aug 26.
6
Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils.
J Biol Chem. 2009 May 22;284(21):14058-67. doi: 10.1074/jbc.M901189200. Epub 2009 Mar 25.
7
Flexibility of the Ure2 prion domain is important for amyloid fibril formation.
Biochem J. 2011 Feb 15;434(1):143-51. doi: 10.1042/BJ20101895.
8
The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms.
J Biol Chem. 2004 Nov 26;279(48):50025-30. doi: 10.1074/jbc.M406612200. Epub 2004 Sep 15.

引用本文的文献

1
Wheat pathogen -myristoyltransferase inhibitors: on-target antifungal activity and an unusual metabolic defense mechanism.
RSC Chem Biol. 2020 May 13;1(2):68-78. doi: 10.1039/d0cb00020e. eCollection 2020 Jun 1.
2
Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of and .
Appl Environ Microbiol. 2021 Aug 11;87(17):e0048121. doi: 10.1128/AEM.00481-21.
3
Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin.
BMC Genomics. 2016 Mar 9;17:210. doi: 10.1186/s12864-016-2550-4.
4
Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils.
J Biol Chem. 2009 May 22;284(21):14058-67. doi: 10.1074/jbc.M901189200. Epub 2009 Mar 25.
5
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi.
Eukaryot Cell. 2008 Jun;7(6):917-25. doi: 10.1128/EC.00076-08. Epub 2008 Apr 25.
6
Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.
J Biol Chem. 2007 Jun 22;282(25):18467-18480. doi: 10.1074/jbc.M609550200. Epub 2007 Apr 17.
7
A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.
Eukaryot Cell. 2006 Oct;5(10):1748-59. doi: 10.1128/EC.00216-06. Epub 2006 Aug 25.
8
Glutaredoxins in fungi.
Photosynth Res. 2006 Sep;89(2-3):127-40. doi: 10.1007/s11120-006-9079-3. Epub 2006 Aug 17.

本文引用的文献

2
The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms.
J Biol Chem. 2004 Nov 26;279(48):50025-30. doi: 10.1074/jbc.M406612200. Epub 2004 Sep 15.
5
Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases.
Mol Biol Cell. 2003 Nov;14(11):4342-51. doi: 10.1091/mbc.e03-02-0072. Epub 2003 Jul 25.
8
Role of yeast glutaredoxins as glutathione S-transferases.
J Biol Chem. 2003 Jun 20;278(25):22492-7. doi: 10.1074/jbc.M301387200. Epub 2003 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验