Suppr超能文献

确定地方医疗保健规划区域:一种多维方法。

Defining regions for locality health care planning: a multidimensional approach.

作者信息

Shortt Niamh K, Moore Adrian, Coombes Mike, Wymer Colin

机构信息

Institute of Geography, University of Edinburgh, Edinburgh E48 9XP, United Kingdom.

出版信息

Soc Sci Med. 2005 Jun;60(12):2715-27. doi: 10.1016/j.socscimed.2004.11.016. Epub 2005 Jan 8.

Abstract

The increasing significance of the role of the general practitioner (GP) in the British National Health Service, evolving from a provider to purchaser and now a key player in the organisation of Primary Care Groups, suggests the need for GPs to possess more and more information about their registered population. GP catchment areas, though an essential basis for providing GPs with important information such as levels of accessibility to surgery, are rarely clearly or accurately defined. Previous approaches towards the definition of GP catchments have been confined to single regionalisation methods, such as mean distance measures, and are prone to problems of either overestimating or underestimating medical service areas. This problem is compounded by a lack of acknowledgement that the application of contrasting catchment methodologies to a common service population has the potential to yield vastly different results which can have serious implications for health care planning and resource allocation. The lack of sophistication in the definition of medical service areas calls for a new methodology to be considered. In this paper, attention is given to the adaptation of multidimensional regional analytical techniques developed outside the health domain and applied in a Regional Health Authority in Northern Ireland. The technique involves the creation of a Synthetic Data Matrix (SDM) which compares patient to GP flow (affiliation) information aggregated at the Census Enumeration District level across a number of catchment areas created using different methodologies. The SDM is then analysed using a modified version of the European Regionalisation Algorithm to create an optimal set of non-overlapping regions according to pre-defined population size and self-containment criteria. The results, a set of compact, robust and highly self-contained catchments, are extremely encouraging. The paper considers the future potential use of such a methodology for health care planning and highlights areas for further research in this field.

摘要

在英国国家医疗服务体系中,全科医生(GP)的角色愈发重要,其职责从医疗服务提供者逐渐转变为购买者,如今更是基层医疗集团组织中的关键角色,这意味着全科医生需要掌握越来越多关于其注册患者群体的信息。全科医生的服务区域虽然是为其提供诸如就诊便利程度等重要信息的关键依据,但却很少被清晰、准确地界定。以往界定全科医生服务区域的方法局限于单一的区域划分方式,比如平均距离测量法,而且容易出现高估或低估医疗服务区域的问题。由于未能认识到将不同的服务区域划分方法应用于同一服务人群可能会产生截然不同的结果,而这可能对医疗规划和资源分配产生严重影响,这一问题变得更加复杂。医疗服务区域界定方法的不完善促使人们考虑采用一种新的方法。本文将关注在健康领域之外开发并应用于北爱尔兰一个地区卫生局的多维区域分析技术的适应性。该技术涉及创建一个综合数据矩阵(SDM),该矩阵将在使用不同方法创建的多个服务区域内,在人口普查枚举区层面汇总的患者与全科医生流向(隶属关系)信息进行比较。然后,使用欧洲区域划分算法的一个修改版本对综合数据矩阵进行分析,以根据预先定义的人口规模和自我包含标准创建一组最优的不重叠区域。结果是一组紧凑、稳健且高度自我包含的服务区域,非常令人鼓舞。本文探讨了这种方法在未来医疗规划中的潜在用途,并强调了该领域进一步研究的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验