Department of Geography, Michigan State University, East Lansing, MI 48824, USA.
BMC Health Serv Res. 2013 Aug 22;13:333. doi: 10.1186/1472-6963-13-333.
Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state's Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed.
The clustering methodology employs a 2-step K-means + Ward's clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups.
Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan.
Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units.
基于社区的医疗保健规划和管理需要将设施和区域单位分组为具有相似医疗保健使用情况的区域。有限的研究探索了创建这些区域所使用的方法。我们提供了一种新的方法,该方法根据患者利用模式和地理位置的相似性对设施进行聚类。我们的案例研究集中在密歇根州的医院组,这是该州床位需求方法中用于预测未来住院病床需求的分配单位。详细介绍了在制定和开发该方法过程中考虑的科学、实践和政治问题。
聚类方法采用两步 K-均值+Ward 聚类算法对医院进行分组。最终的聚类数量使用一种启发式方法选择,该方法结合了基于统计的聚类拟合度量和医院组的特征。
使用最近的医院利用数据,聚类方法在密歇根州确定了 33 个医院组。
尽管是在需要证书的监管政治氛围中开发的,但我们提供了一种客观、可复制和可持续的方法来创建医院组。由于该方法基于聚类分析和医疗服务利用的理论合理原则构建,因此它在应用程序之间具有高度的可转移性,适合对设施或区域单位进行分组。