Hess Henry, Clemmens John, Brunner Christian, Doot Robert, Luna Sheila, Ernst Karl-Heinz, Vogel Viola
Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
Nano Lett. 2005 Apr;5(4):629-33. doi: 10.1021/nl0478427.
Mastering supramolecular self-assembly to a similar degree as nature has achieved on a subcellular scale is critical for the efficient fabrication of complex nanoscopic and mesoscopic structures. We demonstrate that active, molecular-scale transport powered by biomolecular motors can be utilized to drive the self-assembly of mesoscopic structures that would not form in the absence of active transport. In the presented example, functionalized microtubules transported by surface-immobilized kinesin motors cross-link via biotin/streptavidin bonds and form extended linear and circular mesoscopic structures, which move in the presence of ATP. The self-assembled structures are oriented, exhibit large internal strains, and are metastable while the biomolecular motors are active. The integration of molecular motors into the self-assembly process overcomes the trade-off between stability and complexity in thermally activated molecular self-assembly.
在亚细胞尺度上达到与自然相似程度的超分子自组装掌控能力,对于高效制造复杂的纳米和介观结构至关重要。我们证明,由生物分子马达驱动的主动分子尺度运输可用于驱动介观结构的自组装,而在没有主动运输的情况下这些结构不会形成。在给出的示例中,由表面固定的驱动蛋白马达运输的功能化微管通过生物素/链霉亲和素键交联并形成延伸的线性和圆形介观结构,这些结构在ATP存在的情况下移动。自组装结构具有方向性,表现出较大的内部应变,并且在生物分子马达活跃时是亚稳态的。将分子马达整合到自组装过程中克服了热激活分子自组装中稳定性和复杂性之间的权衡。