Suppr超能文献

表面滑行微管的局部方向变化。

Local direction change of surface gliding microtubules.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana.

出版信息

Biotechnol Bioeng. 2019 May;116(5):1128-1138. doi: 10.1002/bit.26933. Epub 2019 Feb 4.

Abstract

In vitro gliding assay, microtubule translocation by kinesin motor proteins on a surface, has been used as an engineering tool in analyte detection, molecular cargo transport, and other applications. Although controlling the moving direction is often necessary to realize these applications, current direction control methods focus largely on lithographic microfabrication of tracks or external fields on the microtubules. These methods are effective, but are relatively complicated. In addition, they cannot target particular microtubules without affecting others. In this study, we propose a facile approach that can make local direction changes for selected microtubules using a polystyrene particle as a circular motion center and a DNA double helix with streptavidin as a capture arm. The DNA arm captures a microtubule in the close proximity of the immobilized particle via biotin-streptavidin interaction and changes the moving direction ~10° on average. In contrast, no significant direction changes are observed other than random variations with streptavidin-less DNA arms (normal distribution centered at 0°), similar to regular motility assay. The particle-assisted local direction change scheme is compared with a flow field-based ensemble method. The combination of flow and kinesin interactions with each microtubule exerts a force to change the direction, ultimately aligning it to the flow field, regardless of its initial direction. A simple model based on the force balance predicts the time needed for such an alignment. Overall, the particle-based local scheme is distinct and different from ensemble methods such as crossflow that changes directions of all microtubules in the field, thus offering unique utility in engineering applications.

摘要

体外滑动检测,即利用驱动蛋白马达在表面上的微管转运,已被用作分析物检测、分子货物运输和其他应用的工程工具。尽管为了实现这些应用,通常需要控制运动方向,但目前的方向控制方法主要集中在微管的光刻微加工或外部场。这些方法是有效的,但相对复杂。此外,它们不能针对特定的微管,而不会影响其他微管。在这项研究中,我们提出了一种简单的方法,使用聚苯乙烯颗粒作为圆周运动中心,用带有链霉亲和素的双链 DNA 作为捕获臂,为选定的微管进行局部方向变化。DNA 臂通过生物素-链霉亲和素相互作用捕获靠近固定颗粒的微管,并将运动方向平均改变约 10°。相比之下,与没有链霉亲和素的 DNA 臂(以 0°为中心的正态分布)相比,除了随机变化外,没有观察到明显的方向变化,类似于常规运动检测。将颗粒辅助的局部方向变化方案与基于流场的整体方法进行了比较。流场与每个微管的驱动蛋白相互作用产生的力改变方向,最终使微管与流场对齐,而不管其初始方向如何。基于力平衡的简单模型预测了实现这种对齐所需的时间。总的来说,基于颗粒的局部方案与整体方法(如横流)不同,横流会改变场中所有微管的方向,因此在工程应用中具有独特的用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验